Hierarchical Image Segmentation Based on Iterative Contraction and Merging
In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contracti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2017-05, Vol.26 (5), p.2246-2260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2260 |
---|---|
container_issue | 5 |
container_start_page | 2246 |
container_title | IEEE transactions on image processing |
container_volume | 26 |
creator | Syu, Jia-Hao Wang, Sheng-Jyh Wang, Li-Chun |
description | In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results. |
doi_str_mv | 10.1109/TIP.2017.2651395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28092551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7814291</ieee_id><sourcerecordid>1861543994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9965a48aaedbaa980286179cd28c2de421ff5e4e265e2039158b746b0f8c80863</originalsourceid><addsrcrecordid>eNpdkNFLwzAQh4Mobk7fBUEKvvjSmUuTNnnUoW4yUXA-lzS91o61nUkr-N-bubkHn-7gvvtx9xFyDnQMQNXNYvY6ZhSSMYsFREockCEoDiGlnB36nookTICrATlxbkkpcAHxMRkwSRUTAobkaVqh1dZ8VEavglmtSwzesKyx6XRXtU1wpx3mgW9mnQe76guDSdt0VpvfsW7y4BltWTXlKTkq9Mrh2a6OyPvD_WIyDecvj7PJ7Tw0EU-6UKlYaC61xjzTWknKZAyJMjmThuXIGRSFQI7-JWQ0UiBklvA4o4U0kso4GpHrbe7atp89ui6tK2dwtdINtr1LwecJHinFPXr1D122vW38dZ6SknIu-SaQbiljW-csFunaVrW23ynQdOM59Z7Tjed059mvXO6C-6zGfL_wJ9YDF1ugQsT9OJHAmYLoB4rUf3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888044846</pqid></control><display><type>article</type><title>Hierarchical Image Segmentation Based on Iterative Contraction and Merging</title><source>IEEE Electronic Library (IEL)</source><creator>Syu, Jia-Hao ; Wang, Sheng-Jyh ; Wang, Li-Chun</creator><creatorcontrib>Syu, Jia-Hao ; Wang, Sheng-Jyh ; Wang, Li-Chun</creatorcontrib><description>In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2651395</identifier><identifier>PMID: 28092551</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Affinity matrix ; Algorithm design and analysis ; Clustering algorithms ; contraction process ; hierarchical image segmentation ; Image color analysis ; Image resolution ; Image segmentation ; Merging ; Optimization</subject><ispartof>IEEE transactions on image processing, 2017-05, Vol.26 (5), p.2246-2260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9965a48aaedbaa980286179cd28c2de421ff5e4e265e2039158b746b0f8c80863</citedby><cites>FETCH-LOGICAL-c347t-9965a48aaedbaa980286179cd28c2de421ff5e4e265e2039158b746b0f8c80863</cites><orcidid>0000-0002-9059-8434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7814291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7814291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28092551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Syu, Jia-Hao</creatorcontrib><creatorcontrib>Wang, Sheng-Jyh</creatorcontrib><creatorcontrib>Wang, Li-Chun</creatorcontrib><title>Hierarchical Image Segmentation Based on Iterative Contraction and Merging</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.</description><subject>Affinity matrix</subject><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>contraction process</subject><subject>hierarchical image segmentation</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Merging</subject><subject>Optimization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFLwzAQh4Mobk7fBUEKvvjSmUuTNnnUoW4yUXA-lzS91o61nUkr-N-bubkHn-7gvvtx9xFyDnQMQNXNYvY6ZhSSMYsFREockCEoDiGlnB36nookTICrATlxbkkpcAHxMRkwSRUTAobkaVqh1dZ8VEavglmtSwzesKyx6XRXtU1wpx3mgW9mnQe76guDSdt0VpvfsW7y4BltWTXlKTkq9Mrh2a6OyPvD_WIyDecvj7PJ7Tw0EU-6UKlYaC61xjzTWknKZAyJMjmThuXIGRSFQI7-JWQ0UiBklvA4o4U0kso4GpHrbe7atp89ui6tK2dwtdINtr1LwecJHinFPXr1D122vW38dZ6SknIu-SaQbiljW-csFunaVrW23ynQdOM59Z7Tjed059mvXO6C-6zGfL_wJ9YDF1ugQsT9OJHAmYLoB4rUf3g</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Syu, Jia-Hao</creator><creator>Wang, Sheng-Jyh</creator><creator>Wang, Li-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9059-8434</orcidid></search><sort><creationdate>20170501</creationdate><title>Hierarchical Image Segmentation Based on Iterative Contraction and Merging</title><author>Syu, Jia-Hao ; Wang, Sheng-Jyh ; Wang, Li-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9965a48aaedbaa980286179cd28c2de421ff5e4e265e2039158b746b0f8c80863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity matrix</topic><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>contraction process</topic><topic>hierarchical image segmentation</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Merging</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syu, Jia-Hao</creatorcontrib><creatorcontrib>Wang, Sheng-Jyh</creatorcontrib><creatorcontrib>Wang, Li-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Syu, Jia-Hao</au><au>Wang, Sheng-Jyh</au><au>Wang, Li-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Image Segmentation Based on Iterative Contraction and Merging</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>26</volume><issue>5</issue><spage>2246</spage><epage>2260</epage><pages>2246-2260</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28092551</pmid><doi>10.1109/TIP.2017.2651395</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9059-8434</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2017-05, Vol.26 (5), p.2246-2260 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_28092551 |
source | IEEE Electronic Library (IEL) |
subjects | Affinity matrix Algorithm design and analysis Clustering algorithms contraction process hierarchical image segmentation Image color analysis Image resolution Image segmentation Merging Optimization |
title | Hierarchical Image Segmentation Based on Iterative Contraction and Merging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Image%20Segmentation%20Based%20on%20Iterative%20Contraction%20and%20Merging&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Syu,%20Jia-Hao&rft.date=2017-05-01&rft.volume=26&rft.issue=5&rft.spage=2246&rft.epage=2260&rft.pages=2246-2260&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2651395&rft_dat=%3Cproquest_RIE%3E1861543994%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888044846&rft_id=info:pmid/28092551&rft_ieee_id=7814291&rfr_iscdi=true |