Hierarchical Image Segmentation Based on Iterative Contraction and Merging

In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-05, Vol.26 (5), p.2246-2260
Hauptverfasser: Syu, Jia-Hao, Wang, Sheng-Jyh, Wang, Li-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2260
container_issue 5
container_start_page 2246
container_title IEEE transactions on image processing
container_volume 26
creator Syu, Jia-Hao
Wang, Sheng-Jyh
Wang, Li-Chun
description In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.
doi_str_mv 10.1109/TIP.2017.2651395
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_28092551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7814291</ieee_id><sourcerecordid>1861543994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9965a48aaedbaa980286179cd28c2de421ff5e4e265e2039158b746b0f8c80863</originalsourceid><addsrcrecordid>eNpdkNFLwzAQh4Mobk7fBUEKvvjSmUuTNnnUoW4yUXA-lzS91o61nUkr-N-bubkHn-7gvvtx9xFyDnQMQNXNYvY6ZhSSMYsFREockCEoDiGlnB36nookTICrATlxbkkpcAHxMRkwSRUTAobkaVqh1dZ8VEavglmtSwzesKyx6XRXtU1wpx3mgW9mnQe76guDSdt0VpvfsW7y4BltWTXlKTkq9Mrh2a6OyPvD_WIyDecvj7PJ7Tw0EU-6UKlYaC61xjzTWknKZAyJMjmThuXIGRSFQI7-JWQ0UiBklvA4o4U0kso4GpHrbe7atp89ui6tK2dwtdINtr1LwecJHinFPXr1D122vW38dZ6SknIu-SaQbiljW-csFunaVrW23ynQdOM59Z7Tjed059mvXO6C-6zGfL_wJ9YDF1ugQsT9OJHAmYLoB4rUf3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888044846</pqid></control><display><type>article</type><title>Hierarchical Image Segmentation Based on Iterative Contraction and Merging</title><source>IEEE Electronic Library (IEL)</source><creator>Syu, Jia-Hao ; Wang, Sheng-Jyh ; Wang, Li-Chun</creator><creatorcontrib>Syu, Jia-Hao ; Wang, Sheng-Jyh ; Wang, Li-Chun</creatorcontrib><description>In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2651395</identifier><identifier>PMID: 28092551</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Affinity matrix ; Algorithm design and analysis ; Clustering algorithms ; contraction process ; hierarchical image segmentation ; Image color analysis ; Image resolution ; Image segmentation ; Merging ; Optimization</subject><ispartof>IEEE transactions on image processing, 2017-05, Vol.26 (5), p.2246-2260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9965a48aaedbaa980286179cd28c2de421ff5e4e265e2039158b746b0f8c80863</citedby><cites>FETCH-LOGICAL-c347t-9965a48aaedbaa980286179cd28c2de421ff5e4e265e2039158b746b0f8c80863</cites><orcidid>0000-0002-9059-8434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7814291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7814291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28092551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Syu, Jia-Hao</creatorcontrib><creatorcontrib>Wang, Sheng-Jyh</creatorcontrib><creatorcontrib>Wang, Li-Chun</creatorcontrib><title>Hierarchical Image Segmentation Based on Iterative Contraction and Merging</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.</description><subject>Affinity matrix</subject><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>contraction process</subject><subject>hierarchical image segmentation</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Merging</subject><subject>Optimization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFLwzAQh4Mobk7fBUEKvvjSmUuTNnnUoW4yUXA-lzS91o61nUkr-N-bubkHn-7gvvtx9xFyDnQMQNXNYvY6ZhSSMYsFREockCEoDiGlnB36nookTICrATlxbkkpcAHxMRkwSRUTAobkaVqh1dZ8VEavglmtSwzesKyx6XRXtU1wpx3mgW9mnQe76guDSdt0VpvfsW7y4BltWTXlKTkq9Mrh2a6OyPvD_WIyDecvj7PJ7Tw0EU-6UKlYaC61xjzTWknKZAyJMjmThuXIGRSFQI7-JWQ0UiBklvA4o4U0kso4GpHrbe7atp89ui6tK2dwtdINtr1LwecJHinFPXr1D122vW38dZ6SknIu-SaQbiljW-csFunaVrW23ynQdOM59Z7Tjed059mvXO6C-6zGfL_wJ9YDF1ugQsT9OJHAmYLoB4rUf3g</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Syu, Jia-Hao</creator><creator>Wang, Sheng-Jyh</creator><creator>Wang, Li-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9059-8434</orcidid></search><sort><creationdate>20170501</creationdate><title>Hierarchical Image Segmentation Based on Iterative Contraction and Merging</title><author>Syu, Jia-Hao ; Wang, Sheng-Jyh ; Wang, Li-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9965a48aaedbaa980286179cd28c2de421ff5e4e265e2039158b746b0f8c80863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity matrix</topic><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>contraction process</topic><topic>hierarchical image segmentation</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Merging</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syu, Jia-Hao</creatorcontrib><creatorcontrib>Wang, Sheng-Jyh</creatorcontrib><creatorcontrib>Wang, Li-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Syu, Jia-Hao</au><au>Wang, Sheng-Jyh</au><au>Wang, Li-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Image Segmentation Based on Iterative Contraction and Merging</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>26</volume><issue>5</issue><spage>2246</spage><epage>2260</epage><pages>2246-2260</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a new framework for hierarchical image segmentation based on iterative contraction and merging. In the proposed framework, we treat the hierarchical image segmentation problem as a sequel of optimization problems, with each optimization process being realized by a contraction-and-merging process to identify and merge the most similar data pairs at the current resolution. At the beginning, we perform pixel-based contraction and merging to quickly combine image pixels into initial region-elements with visually indistinguishable intra-region color difference. After that, we iteratively perform region-based contraction and merging to group adjacent regions into larger ones to progressively form a segmentation dendrogram for hierarchical segmentation. Comparing with the state-of-the-art techniques, the proposed algorithm can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28092551</pmid><doi>10.1109/TIP.2017.2651395</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9059-8434</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-05, Vol.26 (5), p.2246-2260
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_28092551
source IEEE Electronic Library (IEL)
subjects Affinity matrix
Algorithm design and analysis
Clustering algorithms
contraction process
hierarchical image segmentation
Image color analysis
Image resolution
Image segmentation
Merging
Optimization
title Hierarchical Image Segmentation Based on Iterative Contraction and Merging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Image%20Segmentation%20Based%20on%20Iterative%20Contraction%20and%20Merging&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Syu,%20Jia-Hao&rft.date=2017-05-01&rft.volume=26&rft.issue=5&rft.spage=2246&rft.epage=2260&rft.pages=2246-2260&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2651395&rft_dat=%3Cproquest_RIE%3E1861543994%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888044846&rft_id=info:pmid/28092551&rft_ieee_id=7814291&rfr_iscdi=true