Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability

Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development. Objective: Optimization of the FD to improve long-term stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development and industrial pharmacy 2017-04, Vol.43 (4), p.637-651
Hauptverfasser: Ramos Yacasi, Gladys Rosario, Calpena Campmany, Ana Cristina, Egea Gras, María Antonia, Espina García, Marta, García López, María Luisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 4
container_start_page 637
container_title Drug development and industrial pharmacy
container_volume 43
creator Ramos Yacasi, Gladys Rosario
Calpena Campmany, Ana Cristina
Egea Gras, María Antonia
Espina García, Marta
García López, María Luisa
description Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development. Objective: Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs. Methods: FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components. Results: Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at −50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, −16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability >12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD. Conclusions: An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.
doi_str_mv 10.1080/03639045.2016.1275669
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28044462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855065051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-fb17e8d4df5d5f740da02b57538c177ae230dfdc45d6e69f594787889da57b693</originalsourceid><addsrcrecordid>eNp9kcGO1SAUhonRONfRR9CwdNMrtAVaV5qJoyaTuNE1oXC4wVCoQDWdR_Ippd47Ll0B4Tv_T_gQeknJkZKBvCEd70bSs2NLKD_SVjDOx0foQFlLGiZ4-xgddqbZoSv0LOfvhNB2ZOwpumoH0vc9bw_o920CuAds0ubCCceluNndq-JiwNHiJfpthuQ0DirERaXitIeMbUw46tWrhK1f0-SWFC0EbMC7n5C2txisBV3-ZqRY6laFgtUJQslYBYN1cjVL-f1aQ864hqsZCqSMa7eP4dTUw4xzUZPzrmzP0ROrfIYXl_Uafbv98PXmU3P35ePnm_d3je44L42dqIDB9MYyw6zoiVGknZhg3aCpEArajhhrdM8MBz5aNvZiEMMwGsXExMfuGr0-59aX_VghFzm7rMF7FSCuWdKBMcIZYbSi7IzqFHNOYOWS3KzSJimRuyb5oEnumuRFU517dalYpxnMv6kHLxV4dwZcqF89q18xeSOL2nxMNqmgXZbd_zv-AG90pw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855065051</pqid></control><display><type>article</type><title>Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><creator>Ramos Yacasi, Gladys Rosario ; Calpena Campmany, Ana Cristina ; Egea Gras, María Antonia ; Espina García, Marta ; García López, María Luisa</creator><creatorcontrib>Ramos Yacasi, Gladys Rosario ; Calpena Campmany, Ana Cristina ; Egea Gras, María Antonia ; Espina García, Marta ; García López, María Luisa</creatorcontrib><description>Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development. Objective: Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs. Methods: FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components. Results: Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at −50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, −16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability &gt;12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD. Conclusions: An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.</description><identifier>ISSN: 0363-9045</identifier><identifier>EISSN: 1520-5762</identifier><identifier>DOI: 10.1080/03639045.2016.1275669</identifier><identifier>PMID: 28044462</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Administration, Ophthalmic ; Calorimetry, Differential Scanning - methods ; Caproates - chemistry ; Chemistry, Pharmaceutical - methods ; Cryoprotective Agents - chemistry ; d-(+)-trehalose ; design of experiments ; Drug Stability ; Flurbiprofen ; Flurbiprofen - chemistry ; Freeze Drying - methods ; freeze-drying optimization ; Lactones - chemistry ; nanoparticles ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Particle Size ; Poloxamer - chemistry ; poly(ethylene glycol) ; poly-ɛ-caprolactone ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; X-Ray Diffraction - methods</subject><ispartof>Drug development and industrial pharmacy, 2017-04, Vol.43 (4), p.637-651</ispartof><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-fb17e8d4df5d5f740da02b57538c177ae230dfdc45d6e69f594787889da57b693</citedby><cites>FETCH-LOGICAL-c366t-fb17e8d4df5d5f740da02b57538c177ae230dfdc45d6e69f594787889da57b693</cites><orcidid>0000-0003-3898-9291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28044462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos Yacasi, Gladys Rosario</creatorcontrib><creatorcontrib>Calpena Campmany, Ana Cristina</creatorcontrib><creatorcontrib>Egea Gras, María Antonia</creatorcontrib><creatorcontrib>Espina García, Marta</creatorcontrib><creatorcontrib>García López, María Luisa</creatorcontrib><title>Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability</title><title>Drug development and industrial pharmacy</title><addtitle>Drug Dev Ind Pharm</addtitle><description>Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development. Objective: Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs. Methods: FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components. Results: Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at −50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, −16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability &gt;12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD. Conclusions: An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.</description><subject>Administration, Ophthalmic</subject><subject>Calorimetry, Differential Scanning - methods</subject><subject>Caproates - chemistry</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Cryoprotective Agents - chemistry</subject><subject>d-(+)-trehalose</subject><subject>design of experiments</subject><subject>Drug Stability</subject><subject>Flurbiprofen</subject><subject>Flurbiprofen - chemistry</subject><subject>Freeze Drying - methods</subject><subject>freeze-drying optimization</subject><subject>Lactones - chemistry</subject><subject>nanoparticles</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Poloxamer - chemistry</subject><subject>poly(ethylene glycol)</subject><subject>poly-ɛ-caprolactone</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>X-Ray Diffraction - methods</subject><issn>0363-9045</issn><issn>1520-5762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGO1SAUhonRONfRR9CwdNMrtAVaV5qJoyaTuNE1oXC4wVCoQDWdR_Ippd47Ll0B4Tv_T_gQeknJkZKBvCEd70bSs2NLKD_SVjDOx0foQFlLGiZ4-xgddqbZoSv0LOfvhNB2ZOwpumoH0vc9bw_o920CuAds0ubCCceluNndq-JiwNHiJfpthuQ0DirERaXitIeMbUw46tWrhK1f0-SWFC0EbMC7n5C2txisBV3-ZqRY6laFgtUJQslYBYN1cjVL-f1aQ864hqsZCqSMa7eP4dTUw4xzUZPzrmzP0ROrfIYXl_Uafbv98PXmU3P35ePnm_d3je44L42dqIDB9MYyw6zoiVGknZhg3aCpEArajhhrdM8MBz5aNvZiEMMwGsXExMfuGr0-59aX_VghFzm7rMF7FSCuWdKBMcIZYbSi7IzqFHNOYOWS3KzSJimRuyb5oEnumuRFU517dalYpxnMv6kHLxV4dwZcqF89q18xeSOL2nxMNqmgXZbd_zv-AG90pw8</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Ramos Yacasi, Gladys Rosario</creator><creator>Calpena Campmany, Ana Cristina</creator><creator>Egea Gras, María Antonia</creator><creator>Espina García, Marta</creator><creator>García López, María Luisa</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3898-9291</orcidid></search><sort><creationdate>20170403</creationdate><title>Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability</title><author>Ramos Yacasi, Gladys Rosario ; Calpena Campmany, Ana Cristina ; Egea Gras, María Antonia ; Espina García, Marta ; García López, María Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-fb17e8d4df5d5f740da02b57538c177ae230dfdc45d6e69f594787889da57b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Administration, Ophthalmic</topic><topic>Calorimetry, Differential Scanning - methods</topic><topic>Caproates - chemistry</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Cryoprotective Agents - chemistry</topic><topic>d-(+)-trehalose</topic><topic>design of experiments</topic><topic>Drug Stability</topic><topic>Flurbiprofen</topic><topic>Flurbiprofen - chemistry</topic><topic>Freeze Drying - methods</topic><topic>freeze-drying optimization</topic><topic>Lactones - chemistry</topic><topic>nanoparticles</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Poloxamer - chemistry</topic><topic>poly(ethylene glycol)</topic><topic>poly-ɛ-caprolactone</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>X-Ray Diffraction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos Yacasi, Gladys Rosario</creatorcontrib><creatorcontrib>Calpena Campmany, Ana Cristina</creatorcontrib><creatorcontrib>Egea Gras, María Antonia</creatorcontrib><creatorcontrib>Espina García, Marta</creatorcontrib><creatorcontrib>García López, María Luisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug development and industrial pharmacy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos Yacasi, Gladys Rosario</au><au>Calpena Campmany, Ana Cristina</au><au>Egea Gras, María Antonia</au><au>Espina García, Marta</au><au>García López, María Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability</atitle><jtitle>Drug development and industrial pharmacy</jtitle><addtitle>Drug Dev Ind Pharm</addtitle><date>2017-04-03</date><risdate>2017</risdate><volume>43</volume><issue>4</issue><spage>637</spage><epage>651</epage><pages>637-651</pages><issn>0363-9045</issn><eissn>1520-5762</eissn><abstract>Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development. Objective: Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs. Methods: FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components. Results: Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at −50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, −16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability &gt;12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD. Conclusions: An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>28044462</pmid><doi>10.1080/03639045.2016.1275669</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3898-9291</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-9045
ispartof Drug development and industrial pharmacy, 2017-04, Vol.43 (4), p.637-651
issn 0363-9045
1520-5762
language eng
recordid cdi_pubmed_primary_28044462
source MEDLINE; EBSCOhost Business Source Complete
subjects Administration, Ophthalmic
Calorimetry, Differential Scanning - methods
Caproates - chemistry
Chemistry, Pharmaceutical - methods
Cryoprotective Agents - chemistry
d-(+)-trehalose
design of experiments
Drug Stability
Flurbiprofen
Flurbiprofen - chemistry
Freeze Drying - methods
freeze-drying optimization
Lactones - chemistry
nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Particle Size
Poloxamer - chemistry
poly(ethylene glycol)
poly-ɛ-caprolactone
Polyethylene Glycols - chemistry
Polymers - chemistry
X-Ray Diffraction - methods
title Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freeze%20drying%20optimization%20of%20polymeric%20nanoparticles%20for%20ocular%20flurbiprofen%20delivery:%20effect%20of%20protectant%20agents%20and%20critical%20process%20parameters%20on%20long-term%20stability&rft.jtitle=Drug%20development%20and%20industrial%20pharmacy&rft.au=Ramos%20Yacasi,%20Gladys%20Rosario&rft.date=2017-04-03&rft.volume=43&rft.issue=4&rft.spage=637&rft.epage=651&rft.pages=637-651&rft.issn=0363-9045&rft.eissn=1520-5762&rft_id=info:doi/10.1080/03639045.2016.1275669&rft_dat=%3Cproquest_pubme%3E1855065051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855065051&rft_id=info:pmid/28044462&rfr_iscdi=true