Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability
Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development. Objective: Optimization of the FD to improve long-term stabi...
Gespeichert in:
Veröffentlicht in: | Drug development and industrial pharmacy 2017-04, Vol.43 (4), p.637-651 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 651 |
---|---|
container_issue | 4 |
container_start_page | 637 |
container_title | Drug development and industrial pharmacy |
container_volume | 43 |
creator | Ramos Yacasi, Gladys Rosario Calpena Campmany, Ana Cristina Egea Gras, María Antonia Espina García, Marta García López, María Luisa |
description | Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development.
Objective: Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs.
Methods: FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components.
Results: Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at −50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, −16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability >12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD.
Conclusions: An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process. |
doi_str_mv | 10.1080/03639045.2016.1275669 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28044462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855065051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-fb17e8d4df5d5f740da02b57538c177ae230dfdc45d6e69f594787889da57b693</originalsourceid><addsrcrecordid>eNp9kcGO1SAUhonRONfRR9CwdNMrtAVaV5qJoyaTuNE1oXC4wVCoQDWdR_Ippd47Ll0B4Tv_T_gQeknJkZKBvCEd70bSs2NLKD_SVjDOx0foQFlLGiZ4-xgddqbZoSv0LOfvhNB2ZOwpumoH0vc9bw_o920CuAds0ubCCceluNndq-JiwNHiJfpthuQ0DirERaXitIeMbUw46tWrhK1f0-SWFC0EbMC7n5C2txisBV3-ZqRY6laFgtUJQslYBYN1cjVL-f1aQ864hqsZCqSMa7eP4dTUw4xzUZPzrmzP0ROrfIYXl_Uafbv98PXmU3P35ePnm_d3je44L42dqIDB9MYyw6zoiVGknZhg3aCpEArajhhrdM8MBz5aNvZiEMMwGsXExMfuGr0-59aX_VghFzm7rMF7FSCuWdKBMcIZYbSi7IzqFHNOYOWS3KzSJimRuyb5oEnumuRFU517dalYpxnMv6kHLxV4dwZcqF89q18xeSOL2nxMNqmgXZbd_zv-AG90pw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855065051</pqid></control><display><type>article</type><title>Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><creator>Ramos Yacasi, Gladys Rosario ; Calpena Campmany, Ana Cristina ; Egea Gras, María Antonia ; Espina García, Marta ; García López, María Luisa</creator><creatorcontrib>Ramos Yacasi, Gladys Rosario ; Calpena Campmany, Ana Cristina ; Egea Gras, María Antonia ; Espina García, Marta ; García López, María Luisa</creatorcontrib><description>Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development.
Objective: Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs.
Methods: FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components.
Results: Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at −50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, −16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability >12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD.
Conclusions: An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.</description><identifier>ISSN: 0363-9045</identifier><identifier>EISSN: 1520-5762</identifier><identifier>DOI: 10.1080/03639045.2016.1275669</identifier><identifier>PMID: 28044462</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Administration, Ophthalmic ; Calorimetry, Differential Scanning - methods ; Caproates - chemistry ; Chemistry, Pharmaceutical - methods ; Cryoprotective Agents - chemistry ; d-(+)-trehalose ; design of experiments ; Drug Stability ; Flurbiprofen ; Flurbiprofen - chemistry ; Freeze Drying - methods ; freeze-drying optimization ; Lactones - chemistry ; nanoparticles ; Nanoparticles - administration & dosage ; Nanoparticles - chemistry ; Particle Size ; Poloxamer - chemistry ; poly(ethylene glycol) ; poly-ɛ-caprolactone ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; X-Ray Diffraction - methods</subject><ispartof>Drug development and industrial pharmacy, 2017-04, Vol.43 (4), p.637-651</ispartof><rights>2017 Informa UK Limited, trading as Taylor & Francis Group 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-fb17e8d4df5d5f740da02b57538c177ae230dfdc45d6e69f594787889da57b693</citedby><cites>FETCH-LOGICAL-c366t-fb17e8d4df5d5f740da02b57538c177ae230dfdc45d6e69f594787889da57b693</cites><orcidid>0000-0003-3898-9291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28044462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos Yacasi, Gladys Rosario</creatorcontrib><creatorcontrib>Calpena Campmany, Ana Cristina</creatorcontrib><creatorcontrib>Egea Gras, María Antonia</creatorcontrib><creatorcontrib>Espina García, Marta</creatorcontrib><creatorcontrib>García López, María Luisa</creatorcontrib><title>Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability</title><title>Drug development and industrial pharmacy</title><addtitle>Drug Dev Ind Pharm</addtitle><description>Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development.
Objective: Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs.
Methods: FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components.
Results: Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at −50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, −16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability >12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD.
Conclusions: An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.</description><subject>Administration, Ophthalmic</subject><subject>Calorimetry, Differential Scanning - methods</subject><subject>Caproates - chemistry</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Cryoprotective Agents - chemistry</subject><subject>d-(+)-trehalose</subject><subject>design of experiments</subject><subject>Drug Stability</subject><subject>Flurbiprofen</subject><subject>Flurbiprofen - chemistry</subject><subject>Freeze Drying - methods</subject><subject>freeze-drying optimization</subject><subject>Lactones - chemistry</subject><subject>nanoparticles</subject><subject>Nanoparticles - administration & dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Poloxamer - chemistry</subject><subject>poly(ethylene glycol)</subject><subject>poly-ɛ-caprolactone</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>X-Ray Diffraction - methods</subject><issn>0363-9045</issn><issn>1520-5762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGO1SAUhonRONfRR9CwdNMrtAVaV5qJoyaTuNE1oXC4wVCoQDWdR_Ippd47Ll0B4Tv_T_gQeknJkZKBvCEd70bSs2NLKD_SVjDOx0foQFlLGiZ4-xgddqbZoSv0LOfvhNB2ZOwpumoH0vc9bw_o920CuAds0ubCCceluNndq-JiwNHiJfpthuQ0DirERaXitIeMbUw46tWrhK1f0-SWFC0EbMC7n5C2txisBV3-ZqRY6laFgtUJQslYBYN1cjVL-f1aQ864hqsZCqSMa7eP4dTUw4xzUZPzrmzP0ROrfIYXl_Uafbv98PXmU3P35ePnm_d3je44L42dqIDB9MYyw6zoiVGknZhg3aCpEArajhhrdM8MBz5aNvZiEMMwGsXExMfuGr0-59aX_VghFzm7rMF7FSCuWdKBMcIZYbSi7IzqFHNOYOWS3KzSJimRuyb5oEnumuRFU517dalYpxnMv6kHLxV4dwZcqF89q18xeSOL2nxMNqmgXZbd_zv-AG90pw8</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Ramos Yacasi, Gladys Rosario</creator><creator>Calpena Campmany, Ana Cristina</creator><creator>Egea Gras, María Antonia</creator><creator>Espina García, Marta</creator><creator>García López, María Luisa</creator><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3898-9291</orcidid></search><sort><creationdate>20170403</creationdate><title>Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability</title><author>Ramos Yacasi, Gladys Rosario ; Calpena Campmany, Ana Cristina ; Egea Gras, María Antonia ; Espina García, Marta ; García López, María Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-fb17e8d4df5d5f740da02b57538c177ae230dfdc45d6e69f594787889da57b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Administration, Ophthalmic</topic><topic>Calorimetry, Differential Scanning - methods</topic><topic>Caproates - chemistry</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Cryoprotective Agents - chemistry</topic><topic>d-(+)-trehalose</topic><topic>design of experiments</topic><topic>Drug Stability</topic><topic>Flurbiprofen</topic><topic>Flurbiprofen - chemistry</topic><topic>Freeze Drying - methods</topic><topic>freeze-drying optimization</topic><topic>Lactones - chemistry</topic><topic>nanoparticles</topic><topic>Nanoparticles - administration & dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Poloxamer - chemistry</topic><topic>poly(ethylene glycol)</topic><topic>poly-ɛ-caprolactone</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>X-Ray Diffraction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos Yacasi, Gladys Rosario</creatorcontrib><creatorcontrib>Calpena Campmany, Ana Cristina</creatorcontrib><creatorcontrib>Egea Gras, María Antonia</creatorcontrib><creatorcontrib>Espina García, Marta</creatorcontrib><creatorcontrib>García López, María Luisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug development and industrial pharmacy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos Yacasi, Gladys Rosario</au><au>Calpena Campmany, Ana Cristina</au><au>Egea Gras, María Antonia</au><au>Espina García, Marta</au><au>García López, María Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability</atitle><jtitle>Drug development and industrial pharmacy</jtitle><addtitle>Drug Dev Ind Pharm</addtitle><date>2017-04-03</date><risdate>2017</risdate><volume>43</volume><issue>4</issue><spage>637</spage><epage>651</epage><pages>637-651</pages><issn>0363-9045</issn><eissn>1520-5762</eissn><abstract>Context: The stabilization of flurbiprofen loaded poly-ɛ-caprolactone nanoparticles (FB-PɛCL-NPs) for ocular delivery under accurate freeze-drying (FD) process provides the basis for a large-scale production and its commercial development.
Objective: Optimization of the FD to improve long-term stability of ocular administration's FB-PɛCL-NPs.
Methods: FB-PɛCL-NPs were prepared by solvent displacement method with poloxamer 188 (P188) as stabilizer. Freezing and primary drying (PD) were studied and optimized through freeze-thawing test and FD microscopy. Design of experiments was used to accurate secondary drying (SD) conditions and components concentration. Formulations were selected according to desired physicochemical properties. Furthermore, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to study interactions components.
Results: Optimized FB-PɛCL-NPs, stabilized with 3.5% (w/w) P188 and protected with 8% (w/w) poly(ethylene glycol), was submitted to precooling at +10 °C for 1 h, freezing at −50 °C for 4 h, PD at +5 °C and 0.140 mbar for 24 h and a SD at +45 °C during 10 h. These conditions showed 188.4 ± 1.3 nm, 0.087 ± 0.014, 85.5 ± 1.4%, 0.61 ± 0.12%, −16.4 ± 0.1 mV and 325 ± 7 mOsm/kg of average size, polydispersity index, entrapment efficiency, residual moisture, surface charge and osmolality, respectively. It performed a long-term stability >12 months. DSC and XRD spectra confirmed adequate chemical interaction between formulation components and showed a semi-crystalline state after FD.
Conclusions: An optimal freeze dried ocular formulation was achieved. Evidently, the successful design of this promising colloidal system resulted from rational cooperation between a good formulation and the right conditions in the FD process.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>28044462</pmid><doi>10.1080/03639045.2016.1275669</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3898-9291</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9045 |
ispartof | Drug development and industrial pharmacy, 2017-04, Vol.43 (4), p.637-651 |
issn | 0363-9045 1520-5762 |
language | eng |
recordid | cdi_pubmed_primary_28044462 |
source | MEDLINE; EBSCOhost Business Source Complete |
subjects | Administration, Ophthalmic Calorimetry, Differential Scanning - methods Caproates - chemistry Chemistry, Pharmaceutical - methods Cryoprotective Agents - chemistry d-(+)-trehalose design of experiments Drug Stability Flurbiprofen Flurbiprofen - chemistry Freeze Drying - methods freeze-drying optimization Lactones - chemistry nanoparticles Nanoparticles - administration & dosage Nanoparticles - chemistry Particle Size Poloxamer - chemistry poly(ethylene glycol) poly-ɛ-caprolactone Polyethylene Glycols - chemistry Polymers - chemistry X-Ray Diffraction - methods |
title | Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freeze%20drying%20optimization%20of%20polymeric%20nanoparticles%20for%20ocular%20flurbiprofen%20delivery:%20effect%20of%20protectant%20agents%20and%20critical%20process%20parameters%20on%20long-term%20stability&rft.jtitle=Drug%20development%20and%20industrial%20pharmacy&rft.au=Ramos%20Yacasi,%20Gladys%20Rosario&rft.date=2017-04-03&rft.volume=43&rft.issue=4&rft.spage=637&rft.epage=651&rft.pages=637-651&rft.issn=0363-9045&rft.eissn=1520-5762&rft_id=info:doi/10.1080/03639045.2016.1275669&rft_dat=%3Cproquest_pubme%3E1855065051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855065051&rft_id=info:pmid/28044462&rfr_iscdi=true |