Subsurface contrast due to friction in heterodyne force microscopy

The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different exci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2017-02, Vol.28 (8), p.085704-085704
Hauptverfasser: Verbiest, G J, Oosterkamp, T H, Rost, M J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 085704
container_issue 8
container_start_page 085704
container_title Nanotechnology
container_volume 28
creator Verbiest, G J
Oosterkamp, T H
Rost, M J
description The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.
doi_str_mv 10.1088/1361-6528/aa53f2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27976629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852680906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-6e30f2cdc1d8fc512d24f1f44f717582bf610956abcdc85b4aa23b3d78ac18403</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6GMDITaju04I1R8SZUYgNly_CFSNXawk6H_HkcpZYHppNNz7909AFwieIsg50tUMJQzivlSSlpYfATmh9YxmMOKljkhnMzAWYwbCBHiGJ2CGS6rkjFczcH921DHIVipTKa864OMfaYHk_U-s6FRfeNd1rjs0_QmeL1zJrM-JLhtVPBR-W53Dk6s3EZzsa8L8PH48L56ztevTy-ru3WuCMV9zkwBLVZaIc2toghrTCyyhNgSlZTj2jKUDmayTgynNZESF3WhSy4V4gQWC3A95XbBfw0m9qJtojLbrXTGD1EgTjHjsIIsoXBCxxtjMFZ0oWll2AkExWhOjJrEqElM5tLI1T59qFujDwM_qn7XN74TGz8El54VTjovUgoXkNMSEtFpm9CbP9B_V38DPIyFXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852680906</pqid></control><display><type>article</type><title>Subsurface contrast due to friction in heterodyne force microscopy</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Verbiest, G J ; Oosterkamp, T H ; Rost, M J</creator><creatorcontrib>Verbiest, G J ; Oosterkamp, T H ; Rost, M J</creatorcontrib><description>The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/aa53f2</identifier><identifier>PMID: 27976629</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>atomic force microscopy ; contrast mechanism ; excitation scheme ; friction ; heterodyne force microscopy ; subsurface ; ultrasound</subject><ispartof>Nanotechnology, 2017-02, Vol.28 (8), p.085704-085704</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-6e30f2cdc1d8fc512d24f1f44f717582bf610956abcdc85b4aa23b3d78ac18403</citedby><cites>FETCH-LOGICAL-c452t-6e30f2cdc1d8fc512d24f1f44f717582bf610956abcdc85b4aa23b3d78ac18403</cites><orcidid>0000-0002-1712-1234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/aa53f2/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27976629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verbiest, G J</creatorcontrib><creatorcontrib>Oosterkamp, T H</creatorcontrib><creatorcontrib>Rost, M J</creatorcontrib><title>Subsurface contrast due to friction in heterodyne force microscopy</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.</description><subject>atomic force microscopy</subject><subject>contrast mechanism</subject><subject>excitation scheme</subject><subject>friction</subject><subject>heterodyne force microscopy</subject><subject>subsurface</subject><subject>ultrasound</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kD1PwzAQhi0EoqWwM6GMDITaju04I1R8SZUYgNly_CFSNXawk6H_HkcpZYHppNNz7909AFwieIsg50tUMJQzivlSSlpYfATmh9YxmMOKljkhnMzAWYwbCBHiGJ2CGS6rkjFczcH921DHIVipTKa864OMfaYHk_U-s6FRfeNd1rjs0_QmeL1zJrM-JLhtVPBR-W53Dk6s3EZzsa8L8PH48L56ztevTy-ru3WuCMV9zkwBLVZaIc2toghrTCyyhNgSlZTj2jKUDmayTgynNZESF3WhSy4V4gQWC3A95XbBfw0m9qJtojLbrXTGD1EgTjHjsIIsoXBCxxtjMFZ0oWll2AkExWhOjJrEqElM5tLI1T59qFujDwM_qn7XN74TGz8El54VTjovUgoXkNMSEtFpm9CbP9B_V38DPIyFXg</recordid><startdate>20170224</startdate><enddate>20170224</enddate><creator>Verbiest, G J</creator><creator>Oosterkamp, T H</creator><creator>Rost, M J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid></search><sort><creationdate>20170224</creationdate><title>Subsurface contrast due to friction in heterodyne force microscopy</title><author>Verbiest, G J ; Oosterkamp, T H ; Rost, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-6e30f2cdc1d8fc512d24f1f44f717582bf610956abcdc85b4aa23b3d78ac18403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atomic force microscopy</topic><topic>contrast mechanism</topic><topic>excitation scheme</topic><topic>friction</topic><topic>heterodyne force microscopy</topic><topic>subsurface</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbiest, G J</creatorcontrib><creatorcontrib>Oosterkamp, T H</creatorcontrib><creatorcontrib>Rost, M J</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbiest, G J</au><au>Oosterkamp, T H</au><au>Rost, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subsurface contrast due to friction in heterodyne force microscopy</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2017-02-24</date><risdate>2017</risdate><volume>28</volume><issue>8</issue><spage>085704</spage><epage>085704</epage><pages>085704-085704</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27976629</pmid><doi>10.1088/1361-6528/aa53f2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2017-02, Vol.28 (8), p.085704-085704
issn 0957-4484
1361-6528
language eng
recordid cdi_pubmed_primary_27976629
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects atomic force microscopy
contrast mechanism
excitation scheme
friction
heterodyne force microscopy
subsurface
ultrasound
title Subsurface contrast due to friction in heterodyne force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subsurface%20contrast%20due%20to%20friction%20in%20heterodyne%20force%20microscopy&rft.jtitle=Nanotechnology&rft.au=Verbiest,%20G%20J&rft.date=2017-02-24&rft.volume=28&rft.issue=8&rft.spage=085704&rft.epage=085704&rft.pages=085704-085704&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/aa53f2&rft_dat=%3Cproquest_pubme%3E1852680906%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852680906&rft_id=info:pmid/27976629&rfr_iscdi=true