Subsurface contrast due to friction in heterodyne force microscopy
The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different exci...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2017-02, Vol.28 (8), p.085704-085704 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 085704 |
---|---|
container_issue | 8 |
container_start_page | 085704 |
container_title | Nanotechnology |
container_volume | 28 |
creator | Verbiest, G J Oosterkamp, T H Rost, M J |
description | The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging. |
doi_str_mv | 10.1088/1361-6528/aa53f2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27976629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852680906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-6e30f2cdc1d8fc512d24f1f44f717582bf610956abcdc85b4aa23b3d78ac18403</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6GMDITaju04I1R8SZUYgNly_CFSNXawk6H_HkcpZYHppNNz7909AFwieIsg50tUMJQzivlSSlpYfATmh9YxmMOKljkhnMzAWYwbCBHiGJ2CGS6rkjFczcH921DHIVipTKa864OMfaYHk_U-s6FRfeNd1rjs0_QmeL1zJrM-JLhtVPBR-W53Dk6s3EZzsa8L8PH48L56ztevTy-ru3WuCMV9zkwBLVZaIc2toghrTCyyhNgSlZTj2jKUDmayTgynNZESF3WhSy4V4gQWC3A95XbBfw0m9qJtojLbrXTGD1EgTjHjsIIsoXBCxxtjMFZ0oWll2AkExWhOjJrEqElM5tLI1T59qFujDwM_qn7XN74TGz8El54VTjovUgoXkNMSEtFpm9CbP9B_V38DPIyFXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852680906</pqid></control><display><type>article</type><title>Subsurface contrast due to friction in heterodyne force microscopy</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Verbiest, G J ; Oosterkamp, T H ; Rost, M J</creator><creatorcontrib>Verbiest, G J ; Oosterkamp, T H ; Rost, M J</creatorcontrib><description>The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/aa53f2</identifier><identifier>PMID: 27976629</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>atomic force microscopy ; contrast mechanism ; excitation scheme ; friction ; heterodyne force microscopy ; subsurface ; ultrasound</subject><ispartof>Nanotechnology, 2017-02, Vol.28 (8), p.085704-085704</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-6e30f2cdc1d8fc512d24f1f44f717582bf610956abcdc85b4aa23b3d78ac18403</citedby><cites>FETCH-LOGICAL-c452t-6e30f2cdc1d8fc512d24f1f44f717582bf610956abcdc85b4aa23b3d78ac18403</cites><orcidid>0000-0002-1712-1234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/aa53f2/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27976629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verbiest, G J</creatorcontrib><creatorcontrib>Oosterkamp, T H</creatorcontrib><creatorcontrib>Rost, M J</creatorcontrib><title>Subsurface contrast due to friction in heterodyne force microscopy</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.</description><subject>atomic force microscopy</subject><subject>contrast mechanism</subject><subject>excitation scheme</subject><subject>friction</subject><subject>heterodyne force microscopy</subject><subject>subsurface</subject><subject>ultrasound</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kD1PwzAQhi0EoqWwM6GMDITaju04I1R8SZUYgNly_CFSNXawk6H_HkcpZYHppNNz7909AFwieIsg50tUMJQzivlSSlpYfATmh9YxmMOKljkhnMzAWYwbCBHiGJ2CGS6rkjFczcH921DHIVipTKa864OMfaYHk_U-s6FRfeNd1rjs0_QmeL1zJrM-JLhtVPBR-W53Dk6s3EZzsa8L8PH48L56ztevTy-ru3WuCMV9zkwBLVZaIc2toghrTCyyhNgSlZTj2jKUDmayTgynNZESF3WhSy4V4gQWC3A95XbBfw0m9qJtojLbrXTGD1EgTjHjsIIsoXBCxxtjMFZ0oWll2AkExWhOjJrEqElM5tLI1T59qFujDwM_qn7XN74TGz8El54VTjovUgoXkNMSEtFpm9CbP9B_V38DPIyFXg</recordid><startdate>20170224</startdate><enddate>20170224</enddate><creator>Verbiest, G J</creator><creator>Oosterkamp, T H</creator><creator>Rost, M J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid></search><sort><creationdate>20170224</creationdate><title>Subsurface contrast due to friction in heterodyne force microscopy</title><author>Verbiest, G J ; Oosterkamp, T H ; Rost, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-6e30f2cdc1d8fc512d24f1f44f717582bf610956abcdc85b4aa23b3d78ac18403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atomic force microscopy</topic><topic>contrast mechanism</topic><topic>excitation scheme</topic><topic>friction</topic><topic>heterodyne force microscopy</topic><topic>subsurface</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbiest, G J</creatorcontrib><creatorcontrib>Oosterkamp, T H</creatorcontrib><creatorcontrib>Rost, M J</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbiest, G J</au><au>Oosterkamp, T H</au><au>Rost, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subsurface contrast due to friction in heterodyne force microscopy</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2017-02-24</date><risdate>2017</risdate><volume>28</volume><issue>8</issue><spage>085704</spage><epage>085704</epage><pages>085704-085704</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27976629</pmid><doi>10.1088/1361-6528/aa53f2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2017-02, Vol.28 (8), p.085704-085704 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_pubmed_primary_27976629 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | atomic force microscopy contrast mechanism excitation scheme friction heterodyne force microscopy subsurface ultrasound |
title | Subsurface contrast due to friction in heterodyne force microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subsurface%20contrast%20due%20to%20friction%20in%20heterodyne%20force%20microscopy&rft.jtitle=Nanotechnology&rft.au=Verbiest,%20G%20J&rft.date=2017-02-24&rft.volume=28&rft.issue=8&rft.spage=085704&rft.epage=085704&rft.pages=085704-085704&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/aa53f2&rft_dat=%3Cproquest_pubme%3E1852680906%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852680906&rft_id=info:pmid/27976629&rfr_iscdi=true |