Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code
Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using t...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2016-09, Vol.140 (3), p.2039-2046 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2046 |
---|---|
container_issue | 3 |
container_start_page | 2039 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 140 |
creator | Qiao, Shan Jackson, Edward Coussios, Constantin C. Cleveland, Robin O. |
description | Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools. |
doi_str_mv | 10.1121/1.4962555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27914432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1846026612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c13a75c8b8612110cd3200536949d1f7b05156f085ea0cda4069b1da04249a9b3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhwBdAPgJSisexs_EFCVX8UytxoFy4WBPH2TX12sFOVm3VD1_DLgsc4GSN309v5ukR8hTYCQCHV3AiVMOllPfIAiRnVSu5uE8WjDGoitQckUc5fyujbGv1kBzxpQIhar4gt5_dZvY4uRhoHGiIwbtgMdExxRFXB6FzcWN7Z9DT2U8Jc5xDT-fswoqON4O3VxTLx7S29GwdL9c-bquv2EUfp3yJ11idzTfBTjlu6YW9wkxN7O1j8mBAn-2T_XtMvrx7e3H6oTr_9P7j6ZvzykiAqTJQ41KatmubkhaY6WteotSNEqqHYdkxCbIZWCstFhEFa1QHPTLBhULV1cfk9c53nLuSwthQEng9JrfBdK0jOv23Etxar-JWy1YoVoti8HxvkOL32eZJb1w21nsMNs5ZQysaxptyXkFf7FCTYs7JDoc1wPSPtjTofVuFffbnXQfyVz0FeLkDsnHTzy7-6_ZPeBvTb1CP_VDfASQEro0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846026612</pqid></control><display><type>article</type><title>Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Qiao, Shan ; Jackson, Edward ; Coussios, Constantin C. ; Cleveland, Robin O.</creator><creatorcontrib>Qiao, Shan ; Jackson, Edward ; Coussios, Constantin C. ; Cleveland, Robin O.</creatorcontrib><description>Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4962555</identifier><identifier>PMID: 27914432</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States: Acoustical Society of America</publisher><subject>Biomedical Acoustics</subject><ispartof>The Journal of the Acoustical Society of America, 2016-09, Vol.140 (3), p.2039-2046</ispartof><rights>Acoustical Society of America</rights><rights>2016 Acoustical Society of America. 2016 Acoustical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c13a75c8b8612110cd3200536949d1f7b05156f085ea0cda4069b1da04249a9b3</citedby><cites>FETCH-LOGICAL-c511t-c13a75c8b8612110cd3200536949d1f7b05156f085ea0cda4069b1da04249a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.4962555$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>207,208,230,314,780,784,794,885,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27914432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Shan</creatorcontrib><creatorcontrib>Jackson, Edward</creatorcontrib><creatorcontrib>Coussios, Constantin C.</creatorcontrib><creatorcontrib>Cleveland, Robin O.</creatorcontrib><title>Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools.</description><subject>Biomedical Acoustics</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EokvhwBdAPgJSisexs_EFCVX8UytxoFy4WBPH2TX12sFOVm3VD1_DLgsc4GSN309v5ukR8hTYCQCHV3AiVMOllPfIAiRnVSu5uE8WjDGoitQckUc5fyujbGv1kBzxpQIhar4gt5_dZvY4uRhoHGiIwbtgMdExxRFXB6FzcWN7Z9DT2U8Jc5xDT-fswoqON4O3VxTLx7S29GwdL9c-bquv2EUfp3yJ11idzTfBTjlu6YW9wkxN7O1j8mBAn-2T_XtMvrx7e3H6oTr_9P7j6ZvzykiAqTJQ41KatmubkhaY6WteotSNEqqHYdkxCbIZWCstFhEFa1QHPTLBhULV1cfk9c53nLuSwthQEng9JrfBdK0jOv23Etxar-JWy1YoVoti8HxvkOL32eZJb1w21nsMNs5ZQysaxptyXkFf7FCTYs7JDoc1wPSPtjTofVuFffbnXQfyVz0FeLkDsnHTzy7-6_ZPeBvTb1CP_VDfASQEro0</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Qiao, Shan</creator><creator>Jackson, Edward</creator><creator>Coussios, Constantin C.</creator><creator>Cleveland, Robin O.</creator><general>Acoustical Society of America</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201609</creationdate><title>Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code</title><author>Qiao, Shan ; Jackson, Edward ; Coussios, Constantin C. ; Cleveland, Robin O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c13a75c8b8612110cd3200536949d1f7b05156f085ea0cda4069b1da04249a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomedical Acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Shan</creatorcontrib><creatorcontrib>Jackson, Edward</creatorcontrib><creatorcontrib>Coussios, Constantin C.</creatorcontrib><creatorcontrib>Cleveland, Robin O.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Shan</au><au>Jackson, Edward</au><au>Coussios, Constantin C.</au><au>Cleveland, Robin O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2016-09</date><risdate>2016</risdate><volume>140</volume><issue>3</issue><spage>2039</spage><epage>2046</epage><pages>2039-2046</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools.</abstract><cop>United States</cop><pub>Acoustical Society of America</pub><pmid>27914432</pmid><doi>10.1121/1.4962555</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2016-09, Vol.140 (3), p.2039-2046 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_pubmed_primary_27914432 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
subjects | Biomedical Acoustics |
title | Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20nonlinear%20propagation%20of%20biomedical%20ultrasound%20using%20pzflex%20and%20the%20Khokhlov-Zabolotskaya-Kuznetsov%20Texas%20code&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Qiao,%20Shan&rft.date=2016-09&rft.volume=140&rft.issue=3&rft.spage=2039&rft.epage=2046&rft.pages=2039-2046&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4962555&rft_dat=%3Cproquest_pubme%3E1846026612%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846026612&rft_id=info:pmid/27914432&rfr_iscdi=true |