Computing algebraic transfer entropy and coupling directions via transcripts
Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2016-11, Vol.26 (11), p.113115-113115 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113115 |
---|---|
container_issue | 11 |
container_start_page | 113115 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 26 |
creator | Amigó, José M. Monetti, Roberto Graff, Beata Graff, Grzegorz |
description | Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results. |
doi_str_mv | 10.1063/1.4967803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27908002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845823119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ee282f03d22845ce4d1a016b8cba4e715d72d5b5fd2663af8639abfe7aca80073</originalsourceid><addsrcrecordid>eNp90MtKw0AUBuBBFFurC19AAm5USJ1LJpkspXiDghtdD5O5lClpJs4khb69E1IrKLg6Z_Hxn8MPwCWCcwRzco_mWZkXDJIjMEWQlWmRM3w87DRLEYVwAs5CWEMIESb0FExwUUIGIZ6C5cJt2r6zzSoR9UpXXliZdF40wWif6Kbzrt0lolGJdH1bD05Zr2VnXROSrRUjlt62XTgHJ0bUQV_s5wx8PD2-L17S5dvz6-JhmUrCSJdqjRk2kCiMWUalzhQSEOUVk5XIdIGoKrCiFTUK5zkRhuWkFJXRhZAifl2QGbgZc1vvPnsdOr6xQeq6Fo12feAoxjJMECojvf5F1673TfyOY4QRzWgsKarbUUnvQvDa8NbbjfA7jiAfKuaI7yuO9mqf2FcbrQ7yu9MI7kYQpO3EUNTBbJ3_SeKtMv_hv6e_ANdOkjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121545105</pqid></control><display><type>article</type><title>Computing algebraic transfer entropy and coupling directions via transcripts</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Amigó, José M. ; Monetti, Roberto ; Graff, Beata ; Graff, Grzegorz</creator><creatorcontrib>Amigó, José M. ; Monetti, Roberto ; Graff, Beata ; Graff, Grzegorz</creatorcontrib><description>Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4967803</identifier><identifier>PMID: 27908002</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algebra ; Computer simulation ; Coupling ; Entropy ; Entropy (Information theory) ; Integers ; Nonlinear analysis ; Random processes ; Time series</subject><ispartof>Chaos (Woodbury, N.Y.), 2016-11, Vol.26 (11), p.113115-113115</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ee282f03d22845ce4d1a016b8cba4e715d72d5b5fd2663af8639abfe7aca80073</citedby><cites>FETCH-LOGICAL-c383t-ee282f03d22845ce4d1a016b8cba4e715d72d5b5fd2663af8639abfe7aca80073</cites><orcidid>0000-0002-1642-1171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27908002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amigó, José M.</creatorcontrib><creatorcontrib>Monetti, Roberto</creatorcontrib><creatorcontrib>Graff, Beata</creatorcontrib><creatorcontrib>Graff, Grzegorz</creatorcontrib><title>Computing algebraic transfer entropy and coupling directions via transcripts</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.</description><subject>Algebra</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Integers</subject><subject>Nonlinear analysis</subject><subject>Random processes</subject><subject>Time series</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90MtKw0AUBuBBFFurC19AAm5USJ1LJpkspXiDghtdD5O5lClpJs4khb69E1IrKLg6Z_Hxn8MPwCWCcwRzco_mWZkXDJIjMEWQlWmRM3w87DRLEYVwAs5CWEMIESb0FExwUUIGIZ6C5cJt2r6zzSoR9UpXXliZdF40wWif6Kbzrt0lolGJdH1bD05Zr2VnXROSrRUjlt62XTgHJ0bUQV_s5wx8PD2-L17S5dvz6-JhmUrCSJdqjRk2kCiMWUalzhQSEOUVk5XIdIGoKrCiFTUK5zkRhuWkFJXRhZAifl2QGbgZc1vvPnsdOr6xQeq6Fo12feAoxjJMECojvf5F1673TfyOY4QRzWgsKarbUUnvQvDa8NbbjfA7jiAfKuaI7yuO9mqf2FcbrQ7yu9MI7kYQpO3EUNTBbJ3_SeKtMv_hv6e_ANdOkjc</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Amigó, José M.</creator><creator>Monetti, Roberto</creator><creator>Graff, Beata</creator><creator>Graff, Grzegorz</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1642-1171</orcidid></search><sort><creationdate>201611</creationdate><title>Computing algebraic transfer entropy and coupling directions via transcripts</title><author>Amigó, José M. ; Monetti, Roberto ; Graff, Beata ; Graff, Grzegorz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ee282f03d22845ce4d1a016b8cba4e715d72d5b5fd2663af8639abfe7aca80073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Integers</topic><topic>Nonlinear analysis</topic><topic>Random processes</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amigó, José M.</creatorcontrib><creatorcontrib>Monetti, Roberto</creatorcontrib><creatorcontrib>Graff, Beata</creatorcontrib><creatorcontrib>Graff, Grzegorz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amigó, José M.</au><au>Monetti, Roberto</au><au>Graff, Beata</au><au>Graff, Grzegorz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing algebraic transfer entropy and coupling directions via transcripts</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2016-11</date><risdate>2016</risdate><volume>26</volume><issue>11</issue><spage>113115</spage><epage>113115</epage><pages>113115-113115</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27908002</pmid><doi>10.1063/1.4967803</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1642-1171</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2016-11, Vol.26 (11), p.113115-113115 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_pubmed_primary_27908002 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algebra Computer simulation Coupling Entropy Entropy (Information theory) Integers Nonlinear analysis Random processes Time series |
title | Computing algebraic transfer entropy and coupling directions via transcripts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20algebraic%20transfer%20entropy%20and%20coupling%20directions%20via%20transcripts&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Amig%C3%B3,%20Jos%C3%A9%20M.&rft.date=2016-11&rft.volume=26&rft.issue=11&rft.spage=113115&rft.epage=113115&rft.pages=113115-113115&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4967803&rft_dat=%3Cproquest_pubme%3E1845823119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121545105&rft_id=info:pmid/27908002&rfr_iscdi=true |