Polymer translocation through nanopore into active bath

Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-11, Vol.145 (17), p.174902-174902
Hauptverfasser: Pu, Mingfeng, Jiang, Huijun, Hou, Zhonghuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174902
container_issue 17
container_start_page 174902
container_title The Journal of chemical physics
container_volume 145
creator Pu, Mingfeng
Jiang, Huijun
Hou, Zhonghuai
description Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time τ can show a bell-shape dependence on the particle activity Fa at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that τ can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.
doi_str_mv 10.1063/1.4966591
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27825228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121505144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cb889364fe46e9cf3c6661c96d7421f112ffaef8fec0d5a4676a9e7fc91e610f3</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgipvTg29ACl5U6MyTpGlzlOE_GOhBzyFLE9fRNjNJB3v3dm4qCHp6Lh9-PHwROgU8BszpNYyZ4DwTsIeGgAuR5lzgfTTEmEAqOOYDdBTCAmMMOWGHaEDygmSEFEOUP7t63RifRK_aUDutYuXaJM69697mSatat3TeJFUbXaJ0rFYmmak4P0YHVtXBnOzuCL3e3b5MHtLp0_3j5GaaalrQmOpZUQjKmTWMG6Et1Zxz0IKXOSNgAYi1ytjCGo3LTDGecyVMbrUAwwFbOkIX292ld--dCVE2VdCmrlVrXBckFFQAwZCxnp7_ogvX-bb_ThIgkOEM2EZdbpX2LgRvrFz6qlF-LQHLTU0Jclezt2e7xW7WmPJbfuXrwdUWBF3Fz3L_rv2JV87_QLksLf0Aj9CKRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121505144</pqid></control><display><type>article</type><title>Polymer translocation through nanopore into active bath</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pu, Mingfeng ; Jiang, Huijun ; Hou, Zhonghuai</creator><creatorcontrib>Pu, Mingfeng ; Jiang, Huijun ; Hou, Zhonghuai</creatorcontrib><description>Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time τ can show a bell-shape dependence on the particle activity Fa at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that τ can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4966591</identifier><identifier>PMID: 27825228</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Biological activity ; Dependence ; Mechanical Phenomena ; Models, Molecular ; Molecular Conformation ; Nanopores ; Physics ; Polymers ; Polymers - chemistry ; Polymers - metabolism ; Porosity</subject><ispartof>The Journal of chemical physics, 2016-11, Vol.145 (17), p.174902-174902</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cb889364fe46e9cf3c6661c96d7421f112ffaef8fec0d5a4676a9e7fc91e610f3</citedby><cites>FETCH-LOGICAL-c383t-cb889364fe46e9cf3c6661c96d7421f112ffaef8fec0d5a4676a9e7fc91e610f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4966591$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27825228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pu, Mingfeng</creatorcontrib><creatorcontrib>Jiang, Huijun</creatorcontrib><creatorcontrib>Hou, Zhonghuai</creatorcontrib><title>Polymer translocation through nanopore into active bath</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time τ can show a bell-shape dependence on the particle activity Fa at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that τ can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.</description><subject>Biological activity</subject><subject>Dependence</subject><subject>Mechanical Phenomena</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanopores</subject><subject>Physics</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polymers - metabolism</subject><subject>Porosity</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAYx_EgipvTg29ACl5U6MyTpGlzlOE_GOhBzyFLE9fRNjNJB3v3dm4qCHp6Lh9-PHwROgU8BszpNYyZ4DwTsIeGgAuR5lzgfTTEmEAqOOYDdBTCAmMMOWGHaEDygmSEFEOUP7t63RifRK_aUDutYuXaJM69697mSatat3TeJFUbXaJ0rFYmmak4P0YHVtXBnOzuCL3e3b5MHtLp0_3j5GaaalrQmOpZUQjKmTWMG6Et1Zxz0IKXOSNgAYi1ytjCGo3LTDGecyVMbrUAwwFbOkIX292ld--dCVE2VdCmrlVrXBckFFQAwZCxnp7_ogvX-bb_ThIgkOEM2EZdbpX2LgRvrFz6qlF-LQHLTU0Jclezt2e7xW7WmPJbfuXrwdUWBF3Fz3L_rv2JV87_QLksLf0Aj9CKRA</recordid><startdate>20161107</startdate><enddate>20161107</enddate><creator>Pu, Mingfeng</creator><creator>Jiang, Huijun</creator><creator>Hou, Zhonghuai</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20161107</creationdate><title>Polymer translocation through nanopore into active bath</title><author>Pu, Mingfeng ; Jiang, Huijun ; Hou, Zhonghuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cb889364fe46e9cf3c6661c96d7421f112ffaef8fec0d5a4676a9e7fc91e610f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological activity</topic><topic>Dependence</topic><topic>Mechanical Phenomena</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanopores</topic><topic>Physics</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polymers - metabolism</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Mingfeng</creatorcontrib><creatorcontrib>Jiang, Huijun</creatorcontrib><creatorcontrib>Hou, Zhonghuai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Mingfeng</au><au>Jiang, Huijun</au><au>Hou, Zhonghuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer translocation through nanopore into active bath</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-11-07</date><risdate>2016</risdate><volume>145</volume><issue>17</issue><spage>174902</spage><epage>174902</epage><pages>174902-174902</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time τ can show a bell-shape dependence on the particle activity Fa at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that τ can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27825228</pmid><doi>10.1063/1.4966591</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-11, Vol.145 (17), p.174902-174902
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_27825228
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Biological activity
Dependence
Mechanical Phenomena
Models, Molecular
Molecular Conformation
Nanopores
Physics
Polymers
Polymers - chemistry
Polymers - metabolism
Porosity
title Polymer translocation through nanopore into active bath
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20translocation%20through%20nanopore%20into%20active%20bath&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Pu,%20Mingfeng&rft.date=2016-11-07&rft.volume=145&rft.issue=17&rft.spage=174902&rft.epage=174902&rft.pages=174902-174902&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4966591&rft_dat=%3Cproquest_pubme%3E2121505144%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121505144&rft_id=info:pmid/27825228&rfr_iscdi=true