Polymer translocation through nanopore into active bath
Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Inte...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-11, Vol.145 (17), p.174902-174902 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174902 |
---|---|
container_issue | 17 |
container_start_page | 174902 |
container_title | The Journal of chemical physics |
container_volume | 145 |
creator | Pu, Mingfeng Jiang, Huijun Hou, Zhonghuai |
description | Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time
τ
can show a bell-shape dependence on the particle activity Fa
at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that
τ
can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process. |
doi_str_mv | 10.1063/1.4966591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27825228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121505144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cb889364fe46e9cf3c6661c96d7421f112ffaef8fec0d5a4676a9e7fc91e610f3</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgipvTg29ACl5U6MyTpGlzlOE_GOhBzyFLE9fRNjNJB3v3dm4qCHp6Lh9-PHwROgU8BszpNYyZ4DwTsIeGgAuR5lzgfTTEmEAqOOYDdBTCAmMMOWGHaEDygmSEFEOUP7t63RifRK_aUDutYuXaJM69697mSatat3TeJFUbXaJ0rFYmmak4P0YHVtXBnOzuCL3e3b5MHtLp0_3j5GaaalrQmOpZUQjKmTWMG6Et1Zxz0IKXOSNgAYi1ytjCGo3LTDGecyVMbrUAwwFbOkIX292ld--dCVE2VdCmrlVrXBckFFQAwZCxnp7_ogvX-bb_ThIgkOEM2EZdbpX2LgRvrFz6qlF-LQHLTU0Jclezt2e7xW7WmPJbfuXrwdUWBF3Fz3L_rv2JV87_QLksLf0Aj9CKRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121505144</pqid></control><display><type>article</type><title>Polymer translocation through nanopore into active bath</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pu, Mingfeng ; Jiang, Huijun ; Hou, Zhonghuai</creator><creatorcontrib>Pu, Mingfeng ; Jiang, Huijun ; Hou, Zhonghuai</creatorcontrib><description>Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time
τ
can show a bell-shape dependence on the particle activity Fa
at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that
τ
can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4966591</identifier><identifier>PMID: 27825228</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Biological activity ; Dependence ; Mechanical Phenomena ; Models, Molecular ; Molecular Conformation ; Nanopores ; Physics ; Polymers ; Polymers - chemistry ; Polymers - metabolism ; Porosity</subject><ispartof>The Journal of chemical physics, 2016-11, Vol.145 (17), p.174902-174902</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cb889364fe46e9cf3c6661c96d7421f112ffaef8fec0d5a4676a9e7fc91e610f3</citedby><cites>FETCH-LOGICAL-c383t-cb889364fe46e9cf3c6661c96d7421f112ffaef8fec0d5a4676a9e7fc91e610f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4966591$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27825228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pu, Mingfeng</creatorcontrib><creatorcontrib>Jiang, Huijun</creatorcontrib><creatorcontrib>Hou, Zhonghuai</creatorcontrib><title>Polymer translocation through nanopore into active bath</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time
τ
can show a bell-shape dependence on the particle activity Fa
at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that
τ
can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.</description><subject>Biological activity</subject><subject>Dependence</subject><subject>Mechanical Phenomena</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanopores</subject><subject>Physics</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polymers - metabolism</subject><subject>Porosity</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAYx_EgipvTg29ACl5U6MyTpGlzlOE_GOhBzyFLE9fRNjNJB3v3dm4qCHp6Lh9-PHwROgU8BszpNYyZ4DwTsIeGgAuR5lzgfTTEmEAqOOYDdBTCAmMMOWGHaEDygmSEFEOUP7t63RifRK_aUDutYuXaJM69697mSatat3TeJFUbXaJ0rFYmmak4P0YHVtXBnOzuCL3e3b5MHtLp0_3j5GaaalrQmOpZUQjKmTWMG6Et1Zxz0IKXOSNgAYi1ytjCGo3LTDGecyVMbrUAwwFbOkIX292ld--dCVE2VdCmrlVrXBckFFQAwZCxnp7_ogvX-bb_ThIgkOEM2EZdbpX2LgRvrFz6qlF-LQHLTU0Jclezt2e7xW7WmPJbfuXrwdUWBF3Fz3L_rv2JV87_QLksLf0Aj9CKRA</recordid><startdate>20161107</startdate><enddate>20161107</enddate><creator>Pu, Mingfeng</creator><creator>Jiang, Huijun</creator><creator>Hou, Zhonghuai</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20161107</creationdate><title>Polymer translocation through nanopore into active bath</title><author>Pu, Mingfeng ; Jiang, Huijun ; Hou, Zhonghuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cb889364fe46e9cf3c6661c96d7421f112ffaef8fec0d5a4676a9e7fc91e610f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological activity</topic><topic>Dependence</topic><topic>Mechanical Phenomena</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanopores</topic><topic>Physics</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polymers - metabolism</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Mingfeng</creatorcontrib><creatorcontrib>Jiang, Huijun</creatorcontrib><creatorcontrib>Hou, Zhonghuai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Mingfeng</au><au>Jiang, Huijun</au><au>Hou, Zhonghuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer translocation through nanopore into active bath</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-11-07</date><risdate>2016</risdate><volume>145</volume><issue>17</issue><spage>174902</spage><epage>174902</epage><pages>174902-174902</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time
τ
can show a bell-shape dependence on the particle activity Fa
at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that
τ
can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27825228</pmid><doi>10.1063/1.4966591</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-11, Vol.145 (17), p.174902-174902 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_27825228 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | Biological activity Dependence Mechanical Phenomena Models, Molecular Molecular Conformation Nanopores Physics Polymers Polymers - chemistry Polymers - metabolism Porosity |
title | Polymer translocation through nanopore into active bath |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20translocation%20through%20nanopore%20into%20active%20bath&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Pu,%20Mingfeng&rft.date=2016-11-07&rft.volume=145&rft.issue=17&rft.spage=174902&rft.epage=174902&rft.pages=174902-174902&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4966591&rft_dat=%3Cproquest_pubme%3E2121505144%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121505144&rft_id=info:pmid/27825228&rfr_iscdi=true |