On metastability and Markov state models for non-stationary molecular dynamics

Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-11, Vol.145 (17), p.174103-174103
Hauptverfasser: Koltai, Péter, Ciccotti, Giovanni, Schütte, Christof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174103
container_issue 17
container_start_page 174103
container_title The Journal of chemical physics
container_volume 145
creator Koltai, Péter
Ciccotti, Giovanni
Schütte, Christof
description Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t 1, t 2] if (a) most of the trajectories starting in A at t 1 end up in B at t 2 and (b) most of the trajectories arriving in B at t 2 actually started from A at t 1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.
doi_str_mv 10.1063/1.4966157
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27825227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1839121843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-33639132104c2dc5fd8aa69151c0bd2b9cd271908d45aacace3f08adf6e9b2cf3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofOctE2bSxG_YLobvQ5pkkJn28ykFfbvzdicoOBV4OThTc5LyCnCFIEl1zhNOWOY5XtkjFDwOGcc9skYgGLMGbAROfJ-AQCY0_SQjGhe0IzSfExe5l3Uml76XpZ1U_erSHY6epbu3X5GYdibqLXaND6qrIs628XrYW076VbhpjFqaKSL9KqTba38MTmoZOPNyfackLf7u9fbx3g2f3i6vZnFKsWij5OEJRwTipAqqlVW6UJKxjFDBaWmJVea5sih0GkmpZLKJBUUUlfM8JKqKpmQi03u0tmPwfhetLVXpmlkZ-zgBRYhn2KRJoGe_6ILO7gu_E7QQDKgOYOgLjdKOeu9M5VYuroNSwoEsS5ZoNiWHOzZNnEoW6N38rvVAK42wKt609bOfFr3kySWuvoP_336C5LakrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121502760</pqid></control><display><type>article</type><title>On metastability and Markov state models for non-stationary molecular dynamics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Koltai, Péter ; Ciccotti, Giovanni ; Schütte, Christof</creator><creatorcontrib>Koltai, Péter ; Ciccotti, Giovanni ; Schütte, Christof</creatorcontrib><description>Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t 1, t 2] if (a) most of the trajectories starting in A at t 1 end up in B at t 2 and (b) most of the trajectories arriving in B at t 2 actually started from A at t 1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4966157</identifier><identifier>PMID: 27825227</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coherence ; Equilibrium ; Markov chains ; Metastable state ; Molecular dynamics ; Physics ; Relaxation time ; Time ; Trajectories</subject><ispartof>The Journal of chemical physics, 2016-11, Vol.145 (17), p.174103-174103</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-33639132104c2dc5fd8aa69151c0bd2b9cd271908d45aacace3f08adf6e9b2cf3</citedby><cites>FETCH-LOGICAL-c418t-33639132104c2dc5fd8aa69151c0bd2b9cd271908d45aacace3f08adf6e9b2cf3</cites><orcidid>0000-0003-0764-9657 ; 0000-0002-8127-6804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4966157$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27825227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koltai, Péter</creatorcontrib><creatorcontrib>Ciccotti, Giovanni</creatorcontrib><creatorcontrib>Schütte, Christof</creatorcontrib><title>On metastability and Markov state models for non-stationary molecular dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t 1, t 2] if (a) most of the trajectories starting in A at t 1 end up in B at t 2 and (b) most of the trajectories arriving in B at t 2 actually started from A at t 1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.</description><subject>Coherence</subject><subject>Equilibrium</subject><subject>Markov chains</subject><subject>Metastable state</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Relaxation time</subject><subject>Time</subject><subject>Trajectories</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofOctE2bSxG_YLobvQ5pkkJn28ykFfbvzdicoOBV4OThTc5LyCnCFIEl1zhNOWOY5XtkjFDwOGcc9skYgGLMGbAROfJ-AQCY0_SQjGhe0IzSfExe5l3Uml76XpZ1U_erSHY6epbu3X5GYdibqLXaND6qrIs628XrYW076VbhpjFqaKSL9KqTba38MTmoZOPNyfackLf7u9fbx3g2f3i6vZnFKsWij5OEJRwTipAqqlVW6UJKxjFDBaWmJVea5sih0GkmpZLKJBUUUlfM8JKqKpmQi03u0tmPwfhetLVXpmlkZ-zgBRYhn2KRJoGe_6ILO7gu_E7QQDKgOYOgLjdKOeu9M5VYuroNSwoEsS5ZoNiWHOzZNnEoW6N38rvVAK42wKt609bOfFr3kySWuvoP_336C5LakrY</recordid><startdate>20161107</startdate><enddate>20161107</enddate><creator>Koltai, Péter</creator><creator>Ciccotti, Giovanni</creator><creator>Schütte, Christof</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0764-9657</orcidid><orcidid>https://orcid.org/0000-0002-8127-6804</orcidid></search><sort><creationdate>20161107</creationdate><title>On metastability and Markov state models for non-stationary molecular dynamics</title><author>Koltai, Péter ; Ciccotti, Giovanni ; Schütte, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-33639132104c2dc5fd8aa69151c0bd2b9cd271908d45aacace3f08adf6e9b2cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coherence</topic><topic>Equilibrium</topic><topic>Markov chains</topic><topic>Metastable state</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Relaxation time</topic><topic>Time</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koltai, Péter</creatorcontrib><creatorcontrib>Ciccotti, Giovanni</creatorcontrib><creatorcontrib>Schütte, Christof</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koltai, Péter</au><au>Ciccotti, Giovanni</au><au>Schütte, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On metastability and Markov state models for non-stationary molecular dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-11-07</date><risdate>2016</risdate><volume>145</volume><issue>17</issue><spage>174103</spage><epage>174103</epage><pages>174103-174103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t 1, t 2] if (a) most of the trajectories starting in A at t 1 end up in B at t 2 and (b) most of the trajectories arriving in B at t 2 actually started from A at t 1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27825227</pmid><doi>10.1063/1.4966157</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0764-9657</orcidid><orcidid>https://orcid.org/0000-0002-8127-6804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-11, Vol.145 (17), p.174103-174103
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_27825227
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coherence
Equilibrium
Markov chains
Metastable state
Molecular dynamics
Physics
Relaxation time
Time
Trajectories
title On metastability and Markov state models for non-stationary molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20metastability%20and%20Markov%20state%20models%20for%20non-stationary%20molecular%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Koltai,%20P%C3%A9ter&rft.date=2016-11-07&rft.volume=145&rft.issue=17&rft.spage=174103&rft.epage=174103&rft.pages=174103-174103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4966157&rft_dat=%3Cproquest_pubme%3E1839121843%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121502760&rft_id=info:pmid/27825227&rfr_iscdi=true