On metastability and Markov state models for non-stationary molecular dynamics
Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-11, Vol.145 (17), p.174103-174103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174103 |
---|---|
container_issue | 17 |
container_start_page | 174103 |
container_title | The Journal of chemical physics |
container_volume | 145 |
creator | Koltai, Péter Ciccotti, Giovanni Schütte, Christof |
description | Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t
1, t
2] if (a) most of the trajectories starting in A at t
1 end up in B at t
2 and (b) most of the trajectories arriving in B at t
2 actually started from A at t
1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples. |
doi_str_mv | 10.1063/1.4966157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27825227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1839121843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-33639132104c2dc5fd8aa69151c0bd2b9cd271908d45aacace3f08adf6e9b2cf3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofOctE2bSxG_YLobvQ5pkkJn28ykFfbvzdicoOBV4OThTc5LyCnCFIEl1zhNOWOY5XtkjFDwOGcc9skYgGLMGbAROfJ-AQCY0_SQjGhe0IzSfExe5l3Uml76XpZ1U_erSHY6epbu3X5GYdibqLXaND6qrIs628XrYW076VbhpjFqaKSL9KqTba38MTmoZOPNyfackLf7u9fbx3g2f3i6vZnFKsWij5OEJRwTipAqqlVW6UJKxjFDBaWmJVea5sih0GkmpZLKJBUUUlfM8JKqKpmQi03u0tmPwfhetLVXpmlkZ-zgBRYhn2KRJoGe_6ILO7gu_E7QQDKgOYOgLjdKOeu9M5VYuroNSwoEsS5ZoNiWHOzZNnEoW6N38rvVAK42wKt609bOfFr3kySWuvoP_336C5LakrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121502760</pqid></control><display><type>article</type><title>On metastability and Markov state models for non-stationary molecular dynamics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Koltai, Péter ; Ciccotti, Giovanni ; Schütte, Christof</creator><creatorcontrib>Koltai, Péter ; Ciccotti, Giovanni ; Schütte, Christof</creatorcontrib><description>Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t
1, t
2] if (a) most of the trajectories starting in A at t
1 end up in B at t
2 and (b) most of the trajectories arriving in B at t
2 actually started from A at t
1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4966157</identifier><identifier>PMID: 27825227</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coherence ; Equilibrium ; Markov chains ; Metastable state ; Molecular dynamics ; Physics ; Relaxation time ; Time ; Trajectories</subject><ispartof>The Journal of chemical physics, 2016-11, Vol.145 (17), p.174103-174103</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-33639132104c2dc5fd8aa69151c0bd2b9cd271908d45aacace3f08adf6e9b2cf3</citedby><cites>FETCH-LOGICAL-c418t-33639132104c2dc5fd8aa69151c0bd2b9cd271908d45aacace3f08adf6e9b2cf3</cites><orcidid>0000-0003-0764-9657 ; 0000-0002-8127-6804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4966157$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27825227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koltai, Péter</creatorcontrib><creatorcontrib>Ciccotti, Giovanni</creatorcontrib><creatorcontrib>Schütte, Christof</creatorcontrib><title>On metastability and Markov state models for non-stationary molecular dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t
1, t
2] if (a) most of the trajectories starting in A at t
1 end up in B at t
2 and (b) most of the trajectories arriving in B at t
2 actually started from A at t
1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.</description><subject>Coherence</subject><subject>Equilibrium</subject><subject>Markov chains</subject><subject>Metastable state</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Relaxation time</subject><subject>Time</subject><subject>Trajectories</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgipvTC_-AFLxRofOctE2bSxG_YLobvQ5pkkJn28ykFfbvzdicoOBV4OThTc5LyCnCFIEl1zhNOWOY5XtkjFDwOGcc9skYgGLMGbAROfJ-AQCY0_SQjGhe0IzSfExe5l3Uml76XpZ1U_erSHY6epbu3X5GYdibqLXaND6qrIs628XrYW076VbhpjFqaKSL9KqTba38MTmoZOPNyfackLf7u9fbx3g2f3i6vZnFKsWij5OEJRwTipAqqlVW6UJKxjFDBaWmJVea5sih0GkmpZLKJBUUUlfM8JKqKpmQi03u0tmPwfhetLVXpmlkZ-zgBRYhn2KRJoGe_6ILO7gu_E7QQDKgOYOgLjdKOeu9M5VYuroNSwoEsS5ZoNiWHOzZNnEoW6N38rvVAK42wKt609bOfFr3kySWuvoP_336C5LakrY</recordid><startdate>20161107</startdate><enddate>20161107</enddate><creator>Koltai, Péter</creator><creator>Ciccotti, Giovanni</creator><creator>Schütte, Christof</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0764-9657</orcidid><orcidid>https://orcid.org/0000-0002-8127-6804</orcidid></search><sort><creationdate>20161107</creationdate><title>On metastability and Markov state models for non-stationary molecular dynamics</title><author>Koltai, Péter ; Ciccotti, Giovanni ; Schütte, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-33639132104c2dc5fd8aa69151c0bd2b9cd271908d45aacace3f08adf6e9b2cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coherence</topic><topic>Equilibrium</topic><topic>Markov chains</topic><topic>Metastable state</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Relaxation time</topic><topic>Time</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koltai, Péter</creatorcontrib><creatorcontrib>Ciccotti, Giovanni</creatorcontrib><creatorcontrib>Schütte, Christof</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koltai, Péter</au><au>Ciccotti, Giovanni</au><au>Schütte, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On metastability and Markov state models for non-stationary molecular dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-11-07</date><risdate>2016</risdate><volume>145</volume><issue>17</issue><spage>174103</spage><epage>174103</epage><pages>174103-174103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly useful any more, in particular in cases where the slowest relaxation time scales are comparable to the time scales at which the external field driving the system varies. We generalize the concept of metastability by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect to the time interval [t
1, t
2] if (a) most of the trajectories starting in A at t
1 end up in B at t
2 and (b) most of the trajectories arriving in B at t
2 actually started from A at t
1. Based on this definition, we can show how to compute coherent sets and then derive finite-time non-stationary Markov state models. We illustrate this concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27825227</pmid><doi>10.1063/1.4966157</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0764-9657</orcidid><orcidid>https://orcid.org/0000-0002-8127-6804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-11, Vol.145 (17), p.174103-174103 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_27825227 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Coherence Equilibrium Markov chains Metastable state Molecular dynamics Physics Relaxation time Time Trajectories |
title | On metastability and Markov state models for non-stationary molecular dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20metastability%20and%20Markov%20state%20models%20for%20non-stationary%20molecular%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Koltai,%20P%C3%A9ter&rft.date=2016-11-07&rft.volume=145&rft.issue=17&rft.spage=174103&rft.epage=174103&rft.pages=174103-174103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4966157&rft_dat=%3Cproquest_pubme%3E1839121843%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121502760&rft_id=info:pmid/27825227&rfr_iscdi=true |