Adaptive Spectral Envelope Estimation for Doppler Ultrasound

Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2016-11, Vol.63 (11), p.1825-1838
Hauptverfasser: Kathpalia, Aditi, Karabiyik, Yucel, Eik-Nes, Sturla H., Tegnander, Eva, Ekroll, Ingvild Kinn, Kiss, Gabriel, Torp, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1838
container_issue 11
container_start_page 1825
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 63
creator Kathpalia, Aditi
Karabiyik, Yucel
Eik-Nes, Sturla H.
Tegnander, Eva
Ekroll, Ingvild Kinn
Kiss, Gabriel
Torp, Hans
description Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this paper for maximum velocity point detection has been developed by modifying an existing method - signal noise slope intersection, incorporating in it steps from an altered version of another method called geometric method. Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained postdetection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings, as well as in vivo recordings from uterine, umbilical, carotid, and subclavian arteries. The results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles, and SNR levels. Standard deviation in the envelope is low - less than 2% in the case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow, and also less than 2% in the case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of pulsatility index estimation in uterine and umbilical arteries.
doi_str_mv 10.1109/TUFFC.2016.2587381
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_27824563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7506118</ieee_id><sourcerecordid>1837301980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-4252b3e47a9b8dd91515452e79ca241aedebdecd09ad393d6323dd4c31a0c003</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOqf_gIIUvHjpzEuaNgEvY24qDDy4nUvavEFH19SkHfjfm_1wB0_v8D7f9-NDyB3QEQBVz4vlbDYZMQrpiAmZcQlnZACCiVgqIc7JgEopYk6BXpFr79eUQpIodkmuWCZZIlI-IC9jo9uu2mL01WLZOV1H02aLtW0xmvqu2uiusk20si56tW1bo4uWdcC87RtzQy5WuvZ4e6xDsphNF5P3eP759jEZz-OSC-jihAlWcEwyrQppjAIBIhEMM1VqloBGg4XB0lClDVfcpJxxY5KSg6YlpXxIng5jW2e_e_Rdvql8iXWtG7S9z0HyLHyp5A59_Ieube-acNyeAuCUi0CxA1U6673DVd668Kn7yYHmO7X5Xm2-U5sf1YbQw3F0X2zQnCJ_LgNwfwAqRDy1M0FTCLt_Ae7LfC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837113035</pqid></control><display><type>article</type><title>Adaptive Spectral Envelope Estimation for Doppler Ultrasound</title><source>IEEE Xplore</source><creator>Kathpalia, Aditi ; Karabiyik, Yucel ; Eik-Nes, Sturla H. ; Tegnander, Eva ; Ekroll, Ingvild Kinn ; Kiss, Gabriel ; Torp, Hans</creator><creatorcontrib>Kathpalia, Aditi ; Karabiyik, Yucel ; Eik-Nes, Sturla H. ; Tegnander, Eva ; Ekroll, Ingvild Kinn ; Kiss, Gabriel ; Torp, Hans</creatorcontrib><description>Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this paper for maximum velocity point detection has been developed by modifying an existing method - signal noise slope intersection, incorporating in it steps from an altered version of another method called geometric method. Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained postdetection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings, as well as in vivo recordings from uterine, umbilical, carotid, and subclavian arteries. The results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles, and SNR levels. Standard deviation in the envelope is low - less than 2% in the case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow, and also less than 2% in the case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of pulsatility index estimation in uterine and umbilical arteries.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2016.2587381</identifier><identifier>PMID: 27824563</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Angles (geometry) ; Arteries ; Blood ; Blood flow ; Blood Flow Assessment ; Blood Flow Velocity - physiology ; Carotid Arteries - diagnostic imaging ; Carotid Arteries - physiology ; Computer Simulation ; Doppler effect ; Doppler spectrogram ; Estimation ; Experiments ; Flow simulation ; Flow velocity ; Humans ; maximum velocity measurement ; Phantoms, Imaging ; Signal to noise ratio ; spectral envelope estimation ; Spectrogram ; Spectrograms ; Ultrasonic imaging ; Ultrasonography, Doppler - instrumentation ; Ultrasonography, Doppler - methods ; Velocity distribution</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016-11, Vol.63 (11), p.1825-1838</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-4252b3e47a9b8dd91515452e79ca241aedebdecd09ad393d6323dd4c31a0c003</citedby><cites>FETCH-LOGICAL-c351t-4252b3e47a9b8dd91515452e79ca241aedebdecd09ad393d6323dd4c31a0c003</cites><orcidid>0000-0002-8349-7301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7506118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7506118$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27824563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kathpalia, Aditi</creatorcontrib><creatorcontrib>Karabiyik, Yucel</creatorcontrib><creatorcontrib>Eik-Nes, Sturla H.</creatorcontrib><creatorcontrib>Tegnander, Eva</creatorcontrib><creatorcontrib>Ekroll, Ingvild Kinn</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Torp, Hans</creatorcontrib><title>Adaptive Spectral Envelope Estimation for Doppler Ultrasound</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this paper for maximum velocity point detection has been developed by modifying an existing method - signal noise slope intersection, incorporating in it steps from an altered version of another method called geometric method. Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained postdetection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings, as well as in vivo recordings from uterine, umbilical, carotid, and subclavian arteries. The results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles, and SNR levels. Standard deviation in the envelope is low - less than 2% in the case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow, and also less than 2% in the case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of pulsatility index estimation in uterine and umbilical arteries.</description><subject>Algorithms</subject><subject>Angles (geometry)</subject><subject>Arteries</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood Flow Assessment</subject><subject>Blood Flow Velocity - physiology</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Carotid Arteries - physiology</subject><subject>Computer Simulation</subject><subject>Doppler effect</subject><subject>Doppler spectrogram</subject><subject>Estimation</subject><subject>Experiments</subject><subject>Flow simulation</subject><subject>Flow velocity</subject><subject>Humans</subject><subject>maximum velocity measurement</subject><subject>Phantoms, Imaging</subject><subject>Signal to noise ratio</subject><subject>spectral envelope estimation</subject><subject>Spectrogram</subject><subject>Spectrograms</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Doppler - instrumentation</subject><subject>Ultrasonography, Doppler - methods</subject><subject>Velocity distribution</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkM9LwzAUx4MoOqf_gIIUvHjpzEuaNgEvY24qDDy4nUvavEFH19SkHfjfm_1wB0_v8D7f9-NDyB3QEQBVz4vlbDYZMQrpiAmZcQlnZACCiVgqIc7JgEopYk6BXpFr79eUQpIodkmuWCZZIlI-IC9jo9uu2mL01WLZOV1H02aLtW0xmvqu2uiusk20si56tW1bo4uWdcC87RtzQy5WuvZ4e6xDsphNF5P3eP759jEZz-OSC-jihAlWcEwyrQppjAIBIhEMM1VqloBGg4XB0lClDVfcpJxxY5KSg6YlpXxIng5jW2e_e_Rdvql8iXWtG7S9z0HyLHyp5A59_Ieube-acNyeAuCUi0CxA1U6673DVd668Kn7yYHmO7X5Xm2-U5sf1YbQw3F0X2zQnCJ_LgNwfwAqRDy1M0FTCLt_Ae7LfC8</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Kathpalia, Aditi</creator><creator>Karabiyik, Yucel</creator><creator>Eik-Nes, Sturla H.</creator><creator>Tegnander, Eva</creator><creator>Ekroll, Ingvild Kinn</creator><creator>Kiss, Gabriel</creator><creator>Torp, Hans</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8349-7301</orcidid></search><sort><creationdate>201611</creationdate><title>Adaptive Spectral Envelope Estimation for Doppler Ultrasound</title><author>Kathpalia, Aditi ; Karabiyik, Yucel ; Eik-Nes, Sturla H. ; Tegnander, Eva ; Ekroll, Ingvild Kinn ; Kiss, Gabriel ; Torp, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-4252b3e47a9b8dd91515452e79ca241aedebdecd09ad393d6323dd4c31a0c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Angles (geometry)</topic><topic>Arteries</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood Flow Assessment</topic><topic>Blood Flow Velocity - physiology</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Carotid Arteries - physiology</topic><topic>Computer Simulation</topic><topic>Doppler effect</topic><topic>Doppler spectrogram</topic><topic>Estimation</topic><topic>Experiments</topic><topic>Flow simulation</topic><topic>Flow velocity</topic><topic>Humans</topic><topic>maximum velocity measurement</topic><topic>Phantoms, Imaging</topic><topic>Signal to noise ratio</topic><topic>spectral envelope estimation</topic><topic>Spectrogram</topic><topic>Spectrograms</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Doppler - instrumentation</topic><topic>Ultrasonography, Doppler - methods</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kathpalia, Aditi</creatorcontrib><creatorcontrib>Karabiyik, Yucel</creatorcontrib><creatorcontrib>Eik-Nes, Sturla H.</creatorcontrib><creatorcontrib>Tegnander, Eva</creatorcontrib><creatorcontrib>Ekroll, Ingvild Kinn</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Torp, Hans</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kathpalia, Aditi</au><au>Karabiyik, Yucel</au><au>Eik-Nes, Sturla H.</au><au>Tegnander, Eva</au><au>Ekroll, Ingvild Kinn</au><au>Kiss, Gabriel</au><au>Torp, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Spectral Envelope Estimation for Doppler Ultrasound</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2016-11</date><risdate>2016</risdate><volume>63</volume><issue>11</issue><spage>1825</spage><epage>1838</epage><pages>1825-1838</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this paper for maximum velocity point detection has been developed by modifying an existing method - signal noise slope intersection, incorporating in it steps from an altered version of another method called geometric method. Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained postdetection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings, as well as in vivo recordings from uterine, umbilical, carotid, and subclavian arteries. The results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles, and SNR levels. Standard deviation in the envelope is low - less than 2% in the case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow, and also less than 2% in the case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of pulsatility index estimation in uterine and umbilical arteries.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27824563</pmid><doi>10.1109/TUFFC.2016.2587381</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8349-7301</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016-11, Vol.63 (11), p.1825-1838
issn 0885-3010
1525-8955
language eng
recordid cdi_pubmed_primary_27824563
source IEEE Xplore
subjects Algorithms
Angles (geometry)
Arteries
Blood
Blood flow
Blood Flow Assessment
Blood Flow Velocity - physiology
Carotid Arteries - diagnostic imaging
Carotid Arteries - physiology
Computer Simulation
Doppler effect
Doppler spectrogram
Estimation
Experiments
Flow simulation
Flow velocity
Humans
maximum velocity measurement
Phantoms, Imaging
Signal to noise ratio
spectral envelope estimation
Spectrogram
Spectrograms
Ultrasonic imaging
Ultrasonography, Doppler - instrumentation
Ultrasonography, Doppler - methods
Velocity distribution
title Adaptive Spectral Envelope Estimation for Doppler Ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Spectral%20Envelope%20Estimation%20for%20Doppler%20Ultrasound&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Kathpalia,%20Aditi&rft.date=2016-11&rft.volume=63&rft.issue=11&rft.spage=1825&rft.epage=1838&rft.pages=1825-1838&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2016.2587381&rft_dat=%3Cproquest_RIE%3E1837301980%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837113035&rft_id=info:pmid/27824563&rft_ieee_id=7506118&rfr_iscdi=true