Granular avalanches down inclined and vibrated planes

In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2016-09, Vol.94 (3-1), p.032904
Hauptverfasser: Gaudel, Naïma, Kiesgen de Richter, Sébastien, Louvet, Nicolas, Jenny, Mathieu, Skali-Lami, Salaheddine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3-1
container_start_page 032904
container_title Physical review. E
container_volume 94
creator Gaudel, Naïma
Kiesgen de Richter, Sébastien
Louvet, Nicolas
Jenny, Mathieu
Skali-Lami, Salaheddine
description In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.
doi_str_mv 10.1103/PhysRevE.94.032904
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_27739816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27739816</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-a171fd32b3399401863d18a8e90c93fa783634eb3bc43593a9933c78095b44a93</originalsourceid><addsrcrecordid>eNo1jtFKw0AQRRdBbKn9AR8kP5A4k9lkdx6l1CoUFNHnMpvd0ki6hmwb6d9b0D5dDhwOV6k7hAIR6OFtd0rvYVwWrAugkkFfqWmpDeQAFU3UPKUvAMAa2GB5oyalMcQW66mqVoPEYydDJqN0EptdSJn__olZG5uujcFnEn02tm6Qwxn6sxPSrbreSpfC_H9n6vNp-bF4ztevq5fF4zrvEewhFzS49VQ6ImYNaGvyaMUGhoZpK8ZSTTo4co2mikmYiRpjgSuntTDN1P1ftz-6ffCbfmj3Mpw2l__0C7k8RnI</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Granular avalanches down inclined and vibrated planes</title><source>American Physical Society Journals</source><creator>Gaudel, Naïma ; Kiesgen de Richter, Sébastien ; Louvet, Nicolas ; Jenny, Mathieu ; Skali-Lami, Salaheddine</creator><creatorcontrib>Gaudel, Naïma ; Kiesgen de Richter, Sébastien ; Louvet, Nicolas ; Jenny, Mathieu ; Skali-Lami, Salaheddine</creatorcontrib><description>In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.</description><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.032904</identifier><identifier>PMID: 27739816</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-09, Vol.94 (3-1), p.032904</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27739816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaudel, Naïma</creatorcontrib><creatorcontrib>Kiesgen de Richter, Sébastien</creatorcontrib><creatorcontrib>Louvet, Nicolas</creatorcontrib><creatorcontrib>Jenny, Mathieu</creatorcontrib><creatorcontrib>Skali-Lami, Salaheddine</creatorcontrib><title>Granular avalanches down inclined and vibrated planes</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.</description><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1jtFKw0AQRRdBbKn9AR8kP5A4k9lkdx6l1CoUFNHnMpvd0ki6hmwb6d9b0D5dDhwOV6k7hAIR6OFtd0rvYVwWrAugkkFfqWmpDeQAFU3UPKUvAMAa2GB5oyalMcQW66mqVoPEYydDJqN0EptdSJn__olZG5uujcFnEn02tm6Qwxn6sxPSrbreSpfC_H9n6vNp-bF4ztevq5fF4zrvEewhFzS49VQ6ImYNaGvyaMUGhoZpK8ZSTTo4co2mikmYiRpjgSuntTDN1P1ftz-6ffCbfmj3Mpw2l__0C7k8RnI</recordid><startdate>20160906</startdate><enddate>20160906</enddate><creator>Gaudel, Naïma</creator><creator>Kiesgen de Richter, Sébastien</creator><creator>Louvet, Nicolas</creator><creator>Jenny, Mathieu</creator><creator>Skali-Lami, Salaheddine</creator><scope>NPM</scope></search><sort><creationdate>20160906</creationdate><title>Granular avalanches down inclined and vibrated planes</title><author>Gaudel, Naïma ; Kiesgen de Richter, Sébastien ; Louvet, Nicolas ; Jenny, Mathieu ; Skali-Lami, Salaheddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-a171fd32b3399401863d18a8e90c93fa783634eb3bc43593a9933c78095b44a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudel, Naïma</creatorcontrib><creatorcontrib>Kiesgen de Richter, Sébastien</creatorcontrib><creatorcontrib>Louvet, Nicolas</creatorcontrib><creatorcontrib>Jenny, Mathieu</creatorcontrib><creatorcontrib>Skali-Lami, Salaheddine</creatorcontrib><collection>PubMed</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudel, Naïma</au><au>Kiesgen de Richter, Sébastien</au><au>Louvet, Nicolas</au><au>Jenny, Mathieu</au><au>Skali-Lami, Salaheddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granular avalanches down inclined and vibrated planes</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-09-06</date><risdate>2016</risdate><volume>94</volume><issue>3-1</issue><spage>032904</spage><pages>032904-</pages><eissn>2470-0053</eissn><abstract>In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.</abstract><cop>United States</cop><pmid>27739816</pmid><doi>10.1103/PhysRevE.94.032904</doi></addata></record>
fulltext fulltext
identifier EISSN: 2470-0053
ispartof Physical review. E, 2016-09, Vol.94 (3-1), p.032904
issn 2470-0053
language eng
recordid cdi_pubmed_primary_27739816
source American Physical Society Journals
title Granular avalanches down inclined and vibrated planes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granular%20avalanches%20down%20inclined%20and%20vibrated%20planes&rft.jtitle=Physical%20review.%20E&rft.au=Gaudel,%20Na%C3%AFma&rft.date=2016-09-06&rft.volume=94&rft.issue=3-1&rft.spage=032904&rft.pages=032904-&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.032904&rft_dat=%3Cpubmed%3E27739816%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27739816&rfr_iscdi=true