Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface
Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conductio...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2016-12, Vol.28 (49), p.494003-494003 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494003 |
---|---|
container_issue | 49 |
container_start_page | 494003 |
container_title | Journal of physics. Condensed matter |
container_volume | 28 |
creator | Kumagai, T Liu, S Shiotari, A Baugh, D Shaikhutdinov, S Wolf, M |
description | Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conduction band minimum monotonically downshifts as the number of the ZnO layers increases up to 4 monolayers (ML). However, it was found by field emission resonance (FER) spectroscopy that the local work function of Ag(1 1 1) slightly decreases for 2 ML thick ZnO but it dramatically changes and drops by about 1.2 eV between 2 and 3 ML, suggesting a structural transformation of the ZnO layer. The spatial variation of the conduction band minimum and the local work function change were visualized at the nanometer scale by mapping the STS and FER intensities. Furthermore, we found that the ZnO layers contained line defects with a few tens of nm long, which can be removed by the injection of a tunneling electron into the conduction band. |
doi_str_mv | 10.1088/0953-8984/28/49/494003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27731306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835418109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ff80b282924250d9b0daf9ba44bb97384b4292152499a3469ee6054c29b51fa63</originalsourceid><addsrcrecordid>eNqFkE1LHTEUhkNpqbe2f0Gyq4LTm6-ZmyxFaitccNOCuAmZTKKxM8k0H9i7c-vf9Jc012uFQqGQQxbnOe_hPAAcYPQJI86XSLS04YKzJeFLJupjCNFXYIFph5uO8cvXYPEC7YF3Kd0ihBin7C3YI6sVxRR1C3C_DlqN0IxG5xi80zDlWHQu0RzDuxB_QFu8zi74Y6j8AEfnDRyMrTgcNl5NTicYLCxjjirfOA_N7LL65Wrolb-Ao9qYWAkPFTy5PsSP9w9PdQRTiVZp8x68sWpM5sPzvw--n33-dvq1WV98OT89WTeatSQ31nLUE04EYaRFg-jRoKzoFWN9L1aUs57VHm4JE0JR1gljOtQyTUTfYqs6ug8Od7lzDD-LSVlOLmkzjsqbUJLEnLYMc4xERbsdqmNIKRor5-gmFTcSI7m1L7di5VasJFwyIXf26-DB847ST2Z4GfujuwIfd4ALs7wNJfp6stTTXzFyHmwlyT_I_-z_DQlynV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835418109</pqid></control><display><type>article</type><title>Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kumagai, T ; Liu, S ; Shiotari, A ; Baugh, D ; Shaikhutdinov, S ; Wolf, M</creator><creatorcontrib>Kumagai, T ; Liu, S ; Shiotari, A ; Baugh, D ; Shaikhutdinov, S ; Wolf, M</creatorcontrib><description>Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conduction band minimum monotonically downshifts as the number of the ZnO layers increases up to 4 monolayers (ML). However, it was found by field emission resonance (FER) spectroscopy that the local work function of Ag(1 1 1) slightly decreases for 2 ML thick ZnO but it dramatically changes and drops by about 1.2 eV between 2 and 3 ML, suggesting a structural transformation of the ZnO layer. The spatial variation of the conduction band minimum and the local work function change were visualized at the nanometer scale by mapping the STS and FER intensities. Furthermore, we found that the ZnO layers contained line defects with a few tens of nm long, which can be removed by the injection of a tunneling electron into the conduction band.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/28/49/494003</identifier><identifier>PMID: 27731306</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>defect dynamics ; Kelvin probe force microscopy ; local electronic structure ; local work function ; scanning tunneling microscopy</subject><ispartof>Journal of physics. Condensed matter, 2016-12, Vol.28 (49), p.494003-494003</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ff80b282924250d9b0daf9ba44bb97384b4292152499a3469ee6054c29b51fa63</citedby><cites>FETCH-LOGICAL-c452t-ff80b282924250d9b0daf9ba44bb97384b4292152499a3469ee6054c29b51fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/28/49/494003/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27731306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumagai, T</creatorcontrib><creatorcontrib>Liu, S</creatorcontrib><creatorcontrib>Shiotari, A</creatorcontrib><creatorcontrib>Baugh, D</creatorcontrib><creatorcontrib>Shaikhutdinov, S</creatorcontrib><creatorcontrib>Wolf, M</creatorcontrib><title>Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conduction band minimum monotonically downshifts as the number of the ZnO layers increases up to 4 monolayers (ML). However, it was found by field emission resonance (FER) spectroscopy that the local work function of Ag(1 1 1) slightly decreases for 2 ML thick ZnO but it dramatically changes and drops by about 1.2 eV between 2 and 3 ML, suggesting a structural transformation of the ZnO layer. The spatial variation of the conduction band minimum and the local work function change were visualized at the nanometer scale by mapping the STS and FER intensities. Furthermore, we found that the ZnO layers contained line defects with a few tens of nm long, which can be removed by the injection of a tunneling electron into the conduction band.</description><subject>defect dynamics</subject><subject>Kelvin probe force microscopy</subject><subject>local electronic structure</subject><subject>local work function</subject><subject>scanning tunneling microscopy</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LHTEUhkNpqbe2f0Gyq4LTm6-ZmyxFaitccNOCuAmZTKKxM8k0H9i7c-vf9Jc012uFQqGQQxbnOe_hPAAcYPQJI86XSLS04YKzJeFLJupjCNFXYIFph5uO8cvXYPEC7YF3Kd0ihBin7C3YI6sVxRR1C3C_DlqN0IxG5xi80zDlWHQu0RzDuxB_QFu8zi74Y6j8AEfnDRyMrTgcNl5NTicYLCxjjirfOA_N7LL65Wrolb-Ao9qYWAkPFTy5PsSP9w9PdQRTiVZp8x68sWpM5sPzvw--n33-dvq1WV98OT89WTeatSQ31nLUE04EYaRFg-jRoKzoFWN9L1aUs57VHm4JE0JR1gljOtQyTUTfYqs6ug8Od7lzDD-LSVlOLmkzjsqbUJLEnLYMc4xERbsdqmNIKRor5-gmFTcSI7m1L7di5VasJFwyIXf26-DB847ST2Z4GfujuwIfd4ALs7wNJfp6stTTXzFyHmwlyT_I_-z_DQlynV4</recordid><startdate>20161214</startdate><enddate>20161214</enddate><creator>Kumagai, T</creator><creator>Liu, S</creator><creator>Shiotari, A</creator><creator>Baugh, D</creator><creator>Shaikhutdinov, S</creator><creator>Wolf, M</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161214</creationdate><title>Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface</title><author>Kumagai, T ; Liu, S ; Shiotari, A ; Baugh, D ; Shaikhutdinov, S ; Wolf, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ff80b282924250d9b0daf9ba44bb97384b4292152499a3469ee6054c29b51fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>defect dynamics</topic><topic>Kelvin probe force microscopy</topic><topic>local electronic structure</topic><topic>local work function</topic><topic>scanning tunneling microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumagai, T</creatorcontrib><creatorcontrib>Liu, S</creatorcontrib><creatorcontrib>Shiotari, A</creatorcontrib><creatorcontrib>Baugh, D</creatorcontrib><creatorcontrib>Shaikhutdinov, S</creatorcontrib><creatorcontrib>Wolf, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumagai, T</au><au>Liu, S</au><au>Shiotari, A</au><au>Baugh, D</au><au>Shaikhutdinov, S</au><au>Wolf, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2016-12-14</date><risdate>2016</risdate><volume>28</volume><issue>49</issue><spage>494003</spage><epage>494003</epage><pages>494003-494003</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conduction band minimum monotonically downshifts as the number of the ZnO layers increases up to 4 monolayers (ML). However, it was found by field emission resonance (FER) spectroscopy that the local work function of Ag(1 1 1) slightly decreases for 2 ML thick ZnO but it dramatically changes and drops by about 1.2 eV between 2 and 3 ML, suggesting a structural transformation of the ZnO layer. The spatial variation of the conduction band minimum and the local work function change were visualized at the nanometer scale by mapping the STS and FER intensities. Furthermore, we found that the ZnO layers contained line defects with a few tens of nm long, which can be removed by the injection of a tunneling electron into the conduction band.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27731306</pmid><doi>10.1088/0953-8984/28/49/494003</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2016-12, Vol.28 (49), p.494003-494003 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pubmed_primary_27731306 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | defect dynamics Kelvin probe force microscopy local electronic structure local work function scanning tunneling microscopy |
title | Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20electronic%20structure,%20work%20function,%20and%20line%20defect%20dynamics%20of%20ultrathin%20epitaxial%20ZnO%20layers%20on%20a%20Ag(1%E2%80%891%E2%80%891)%20surface&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Kumagai,%20T&rft.date=2016-12-14&rft.volume=28&rft.issue=49&rft.spage=494003&rft.epage=494003&rft.pages=494003-494003&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/28/49/494003&rft_dat=%3Cproquest_pubme%3E1835418109%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835418109&rft_id=info:pmid/27731306&rfr_iscdi=true |