Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface

Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2016-12, Vol.28 (49), p.494003-494003
Hauptverfasser: Kumagai, T, Liu, S, Shiotari, A, Baugh, D, Shaikhutdinov, S, Wolf, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494003
container_issue 49
container_start_page 494003
container_title Journal of physics. Condensed matter
container_volume 28
creator Kumagai, T
Liu, S
Shiotari, A
Baugh, D
Shaikhutdinov, S
Wolf, M
description Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conduction band minimum monotonically downshifts as the number of the ZnO layers increases up to 4 monolayers (ML). However, it was found by field emission resonance (FER) spectroscopy that the local work function of Ag(1 1 1) slightly decreases for 2 ML thick ZnO but it dramatically changes and drops by about 1.2 eV between 2 and 3 ML, suggesting a structural transformation of the ZnO layer. The spatial variation of the conduction band minimum and the local work function change were visualized at the nanometer scale by mapping the STS and FER intensities. Furthermore, we found that the ZnO layers contained line defects with a few tens of nm long, which can be removed by the injection of a tunneling electron into the conduction band.
doi_str_mv 10.1088/0953-8984/28/49/494003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27731306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835418109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ff80b282924250d9b0daf9ba44bb97384b4292152499a3469ee6054c29b51fa63</originalsourceid><addsrcrecordid>eNqFkE1LHTEUhkNpqbe2f0Gyq4LTm6-ZmyxFaitccNOCuAmZTKKxM8k0H9i7c-vf9Jc012uFQqGQQxbnOe_hPAAcYPQJI86XSLS04YKzJeFLJupjCNFXYIFph5uO8cvXYPEC7YF3Kd0ihBin7C3YI6sVxRR1C3C_DlqN0IxG5xi80zDlWHQu0RzDuxB_QFu8zi74Y6j8AEfnDRyMrTgcNl5NTicYLCxjjirfOA_N7LL65Wrolb-Ao9qYWAkPFTy5PsSP9w9PdQRTiVZp8x68sWpM5sPzvw--n33-dvq1WV98OT89WTeatSQ31nLUE04EYaRFg-jRoKzoFWN9L1aUs57VHm4JE0JR1gljOtQyTUTfYqs6ug8Od7lzDD-LSVlOLmkzjsqbUJLEnLYMc4xERbsdqmNIKRor5-gmFTcSI7m1L7di5VasJFwyIXf26-DB847ST2Z4GfujuwIfd4ALs7wNJfp6stTTXzFyHmwlyT_I_-z_DQlynV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835418109</pqid></control><display><type>article</type><title>Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kumagai, T ; Liu, S ; Shiotari, A ; Baugh, D ; Shaikhutdinov, S ; Wolf, M</creator><creatorcontrib>Kumagai, T ; Liu, S ; Shiotari, A ; Baugh, D ; Shaikhutdinov, S ; Wolf, M</creatorcontrib><description>Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conduction band minimum monotonically downshifts as the number of the ZnO layers increases up to 4 monolayers (ML). However, it was found by field emission resonance (FER) spectroscopy that the local work function of Ag(1 1 1) slightly decreases for 2 ML thick ZnO but it dramatically changes and drops by about 1.2 eV between 2 and 3 ML, suggesting a structural transformation of the ZnO layer. The spatial variation of the conduction band minimum and the local work function change were visualized at the nanometer scale by mapping the STS and FER intensities. Furthermore, we found that the ZnO layers contained line defects with a few tens of nm long, which can be removed by the injection of a tunneling electron into the conduction band.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/28/49/494003</identifier><identifier>PMID: 27731306</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>defect dynamics ; Kelvin probe force microscopy ; local electronic structure ; local work function ; scanning tunneling microscopy</subject><ispartof>Journal of physics. Condensed matter, 2016-12, Vol.28 (49), p.494003-494003</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ff80b282924250d9b0daf9ba44bb97384b4292152499a3469ee6054c29b51fa63</citedby><cites>FETCH-LOGICAL-c452t-ff80b282924250d9b0daf9ba44bb97384b4292152499a3469ee6054c29b51fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/28/49/494003/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27731306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumagai, T</creatorcontrib><creatorcontrib>Liu, S</creatorcontrib><creatorcontrib>Shiotari, A</creatorcontrib><creatorcontrib>Baugh, D</creatorcontrib><creatorcontrib>Shaikhutdinov, S</creatorcontrib><creatorcontrib>Wolf, M</creatorcontrib><title>Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conduction band minimum monotonically downshifts as the number of the ZnO layers increases up to 4 monolayers (ML). However, it was found by field emission resonance (FER) spectroscopy that the local work function of Ag(1 1 1) slightly decreases for 2 ML thick ZnO but it dramatically changes and drops by about 1.2 eV between 2 and 3 ML, suggesting a structural transformation of the ZnO layer. The spatial variation of the conduction band minimum and the local work function change were visualized at the nanometer scale by mapping the STS and FER intensities. Furthermore, we found that the ZnO layers contained line defects with a few tens of nm long, which can be removed by the injection of a tunneling electron into the conduction band.</description><subject>defect dynamics</subject><subject>Kelvin probe force microscopy</subject><subject>local electronic structure</subject><subject>local work function</subject><subject>scanning tunneling microscopy</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LHTEUhkNpqbe2f0Gyq4LTm6-ZmyxFaitccNOCuAmZTKKxM8k0H9i7c-vf9Jc012uFQqGQQxbnOe_hPAAcYPQJI86XSLS04YKzJeFLJupjCNFXYIFph5uO8cvXYPEC7YF3Kd0ihBin7C3YI6sVxRR1C3C_DlqN0IxG5xi80zDlWHQu0RzDuxB_QFu8zi74Y6j8AEfnDRyMrTgcNl5NTicYLCxjjirfOA_N7LL65Wrolb-Ao9qYWAkPFTy5PsSP9w9PdQRTiVZp8x68sWpM5sPzvw--n33-dvq1WV98OT89WTeatSQ31nLUE04EYaRFg-jRoKzoFWN9L1aUs57VHm4JE0JR1gljOtQyTUTfYqs6ug8Od7lzDD-LSVlOLmkzjsqbUJLEnLYMc4xERbsdqmNIKRor5-gmFTcSI7m1L7di5VasJFwyIXf26-DB847ST2Z4GfujuwIfd4ALs7wNJfp6stTTXzFyHmwlyT_I_-z_DQlynV4</recordid><startdate>20161214</startdate><enddate>20161214</enddate><creator>Kumagai, T</creator><creator>Liu, S</creator><creator>Shiotari, A</creator><creator>Baugh, D</creator><creator>Shaikhutdinov, S</creator><creator>Wolf, M</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161214</creationdate><title>Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface</title><author>Kumagai, T ; Liu, S ; Shiotari, A ; Baugh, D ; Shaikhutdinov, S ; Wolf, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ff80b282924250d9b0daf9ba44bb97384b4292152499a3469ee6054c29b51fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>defect dynamics</topic><topic>Kelvin probe force microscopy</topic><topic>local electronic structure</topic><topic>local work function</topic><topic>scanning tunneling microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumagai, T</creatorcontrib><creatorcontrib>Liu, S</creatorcontrib><creatorcontrib>Shiotari, A</creatorcontrib><creatorcontrib>Baugh, D</creatorcontrib><creatorcontrib>Shaikhutdinov, S</creatorcontrib><creatorcontrib>Wolf, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumagai, T</au><au>Liu, S</au><au>Shiotari, A</au><au>Baugh, D</au><au>Shaikhutdinov, S</au><au>Wolf, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2016-12-14</date><risdate>2016</risdate><volume>28</volume><issue>49</issue><spage>494003</spage><epage>494003</epage><pages>494003-494003</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Using combined low-temperature scanning tunneling microscopy and Kelvin probe force microscopy we studied the local electronic structure and work function change of the (0 0 0 1)-oriented epitaxial ZnO layers on a Ag(1 1 1) substrate. Scanning tunneling spectroscopy (STS) revealed that the conduction band minimum monotonically downshifts as the number of the ZnO layers increases up to 4 monolayers (ML). However, it was found by field emission resonance (FER) spectroscopy that the local work function of Ag(1 1 1) slightly decreases for 2 ML thick ZnO but it dramatically changes and drops by about 1.2 eV between 2 and 3 ML, suggesting a structural transformation of the ZnO layer. The spatial variation of the conduction band minimum and the local work function change were visualized at the nanometer scale by mapping the STS and FER intensities. Furthermore, we found that the ZnO layers contained line defects with a few tens of nm long, which can be removed by the injection of a tunneling electron into the conduction band.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27731306</pmid><doi>10.1088/0953-8984/28/49/494003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2016-12, Vol.28 (49), p.494003-494003
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_27731306
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects defect dynamics
Kelvin probe force microscopy
local electronic structure
local work function
scanning tunneling microscopy
title Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(1 1 1) surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20electronic%20structure,%20work%20function,%20and%20line%20defect%20dynamics%20of%20ultrathin%20epitaxial%20ZnO%20layers%20on%20a%20Ag(1%E2%80%891%E2%80%891)%20surface&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Kumagai,%20T&rft.date=2016-12-14&rft.volume=28&rft.issue=49&rft.spage=494003&rft.epage=494003&rft.pages=494003-494003&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/28/49/494003&rft_dat=%3Cproquest_pubme%3E1835418109%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835418109&rft_id=info:pmid/27731306&rfr_iscdi=true