Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations

A lot of works have shown that frobenius-norm-based representation (FNR) is competitive to sparse representation and nuclear-norm-based representation (NNR) in numerous tasks such as subspace clustering. Despite the success of FNR in experimental studies, less theoretical analysis is provided to und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-01, Vol.29 (1), p.218-224
Hauptverfasser: Peng, Xi, Lu, Canyi, Yi, Zhang, Tang, Huajin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 1
container_start_page 218
container_title IEEE transaction on neural networks and learning systems
container_volume 29
creator Peng, Xi
Lu, Canyi
Yi, Zhang
Tang, Huajin
description A lot of works have shown that frobenius-norm-based representation (FNR) is competitive to sparse representation and nuclear-norm-based representation (NNR) in numerous tasks such as subspace clustering. Despite the success of FNR in experimental studies, less theoretical analysis is provided to understand its working mechanism. In this brief, we fill this gap by building the theoretical connections between FNR and NNR. More specially, we prove that: 1) when the dictionary can provide enough representative capacity, FNR is exactly NNR even though the data set contains the Gaussian noise, Laplacian noise, or sample-specified corruption and 2) otherwise, FNR and NNR are two solutions on the column space of the dictionary.
doi_str_mv 10.1109/TNNLS.2016.2608834
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_27723605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7585081</ieee_id><sourcerecordid>1984595295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9b11d2f5db711116e0e302a59f8ee0ecd2462756c6b896efd08d656854d2812c3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobsz9AQUpeONNZ5I2aXLphtPBqKATvAttcgodXTqTFvHfm324C89Nzkme9xAehK4JnhCC5cMqz5fvE4oJn1COhUjSMzSkhNOYJkKcn_rsc4DG3q9xKI4ZT-UlGtAso0mYhmgxa60F3dWt9dEUum8AG-W9bqBwcd66TVRYE81dW4Kte7-_iqeFBxO9wdaBB9sV-_QVuqiKxsP4eI7Qx_xpNXuJl6_Pi9njMtYJI10sS0IMrZgpMxKKA4YE04LJSkDotaEppxnjmpdCcqgMFoYzLlhqqCBUJyN0f9i7de1XD75Tm9praJrCQtt7RUTCUix5SgJ69w9dt72z4XeKSJEyyahkgaIHSrvWeweV2rp6U7gfRbDauVZ712rnWh1dh9DtcXVfbsCcIn9mA3BzAGoAOD1nTDAsSPILxJiBcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984595295</pqid></control><display><type>article</type><title>Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Xi ; Lu, Canyi ; Yi, Zhang ; Tang, Huajin</creator><creatorcontrib>Peng, Xi ; Lu, Canyi ; Yi, Zhang ; Tang, Huajin</creatorcontrib><description>A lot of works have shown that frobenius-norm-based representation (FNR) is competitive to sparse representation and nuclear-norm-based representation (NNR) in numerous tasks such as subspace clustering. Despite the success of FNR in experimental studies, less theoretical analysis is provided to understand its working mechanism. In this brief, we fill this gap by building the theoretical connections between FNR and NNR. More specially, we prove that: 1) when the dictionary can provide enough representative capacity, FNR is exactly NNR even though the data set contains the Gaussian noise, Laplacian noise, or sample-specified corruption and 2) otherwise, FNR and NNR are two solutions on the column space of the dictionary.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2016.2608834</identifier><identifier>PMID: 27723605</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Clustering ; Corruption ; Dictionaries ; equivalence ; Gaussian noise ; Laplace equations ; Learning systems ; least square regression ; Linear programming ; low rank representation (LRR) ; Minimization ; Noise ; rank minimization ; Representations ; Theoretical analysis ; ℓ₂-minimization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-01, Vol.29 (1), p.218-224</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9b11d2f5db711116e0e302a59f8ee0ecd2462756c6b896efd08d656854d2812c3</citedby><cites>FETCH-LOGICAL-c351t-9b11d2f5db711116e0e302a59f8ee0ecd2462756c6b896efd08d656854d2812c3</cites><orcidid>0000-0002-9857-1543 ; 0000-0002-5727-2790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7585081$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7585081$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27723605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Xi</creatorcontrib><creatorcontrib>Lu, Canyi</creatorcontrib><creatorcontrib>Yi, Zhang</creatorcontrib><creatorcontrib>Tang, Huajin</creatorcontrib><title>Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>A lot of works have shown that frobenius-norm-based representation (FNR) is competitive to sparse representation and nuclear-norm-based representation (NNR) in numerous tasks such as subspace clustering. Despite the success of FNR in experimental studies, less theoretical analysis is provided to understand its working mechanism. In this brief, we fill this gap by building the theoretical connections between FNR and NNR. More specially, we prove that: 1) when the dictionary can provide enough representative capacity, FNR is exactly NNR even though the data set contains the Gaussian noise, Laplacian noise, or sample-specified corruption and 2) otherwise, FNR and NNR are two solutions on the column space of the dictionary.</description><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Corruption</subject><subject>Dictionaries</subject><subject>equivalence</subject><subject>Gaussian noise</subject><subject>Laplace equations</subject><subject>Learning systems</subject><subject>least square regression</subject><subject>Linear programming</subject><subject>low rank representation (LRR)</subject><subject>Minimization</subject><subject>Noise</subject><subject>rank minimization</subject><subject>Representations</subject><subject>Theoretical analysis</subject><subject>ℓ₂-minimization</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMobsz9AQUpeONNZ5I2aXLphtPBqKATvAttcgodXTqTFvHfm324C89Nzkme9xAehK4JnhCC5cMqz5fvE4oJn1COhUjSMzSkhNOYJkKcn_rsc4DG3q9xKI4ZT-UlGtAso0mYhmgxa60F3dWt9dEUum8AG-W9bqBwcd66TVRYE81dW4Kte7-_iqeFBxO9wdaBB9sV-_QVuqiKxsP4eI7Qx_xpNXuJl6_Pi9njMtYJI10sS0IMrZgpMxKKA4YE04LJSkDotaEppxnjmpdCcqgMFoYzLlhqqCBUJyN0f9i7de1XD75Tm9praJrCQtt7RUTCUix5SgJ69w9dt72z4XeKSJEyyahkgaIHSrvWeweV2rp6U7gfRbDauVZ712rnWh1dh9DtcXVfbsCcIn9mA3BzAGoAOD1nTDAsSPILxJiBcQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Peng, Xi</creator><creator>Lu, Canyi</creator><creator>Yi, Zhang</creator><creator>Tang, Huajin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9857-1543</orcidid><orcidid>https://orcid.org/0000-0002-5727-2790</orcidid></search><sort><creationdate>201801</creationdate><title>Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations</title><author>Peng, Xi ; Lu, Canyi ; Yi, Zhang ; Tang, Huajin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9b11d2f5db711116e0e302a59f8ee0ecd2462756c6b896efd08d656854d2812c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Corruption</topic><topic>Dictionaries</topic><topic>equivalence</topic><topic>Gaussian noise</topic><topic>Laplace equations</topic><topic>Learning systems</topic><topic>least square regression</topic><topic>Linear programming</topic><topic>low rank representation (LRR)</topic><topic>Minimization</topic><topic>Noise</topic><topic>rank minimization</topic><topic>Representations</topic><topic>Theoretical analysis</topic><topic>ℓ₂-minimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Xi</creatorcontrib><creatorcontrib>Lu, Canyi</creatorcontrib><creatorcontrib>Yi, Zhang</creatorcontrib><creatorcontrib>Tang, Huajin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Xi</au><au>Lu, Canyi</au><au>Yi, Zhang</au><au>Tang, Huajin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-01</date><risdate>2018</risdate><volume>29</volume><issue>1</issue><spage>218</spage><epage>224</epage><pages>218-224</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>A lot of works have shown that frobenius-norm-based representation (FNR) is competitive to sparse representation and nuclear-norm-based representation (NNR) in numerous tasks such as subspace clustering. Despite the success of FNR in experimental studies, less theoretical analysis is provided to understand its working mechanism. In this brief, we fill this gap by building the theoretical connections between FNR and NNR. More specially, we prove that: 1) when the dictionary can provide enough representative capacity, FNR is exactly NNR even though the data set contains the Gaussian noise, Laplacian noise, or sample-specified corruption and 2) otherwise, FNR and NNR are two solutions on the column space of the dictionary.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27723605</pmid><doi>10.1109/TNNLS.2016.2608834</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9857-1543</orcidid><orcidid>https://orcid.org/0000-0002-5727-2790</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2018-01, Vol.29 (1), p.218-224
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_27723605
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Clustering
Corruption
Dictionaries
equivalence
Gaussian noise
Laplace equations
Learning systems
least square regression
Linear programming
low rank representation (LRR)
Minimization
Noise
rank minimization
Representations
Theoretical analysis
ℓ₂-minimization
title Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connections%20Between%20Nuclear-Norm%20and%20Frobenius-Norm-Based%20Representations&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Peng,%20Xi&rft.date=2018-01&rft.volume=29&rft.issue=1&rft.spage=218&rft.epage=224&rft.pages=218-224&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2016.2608834&rft_dat=%3Cproquest_RIE%3E1984595295%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984595295&rft_id=info:pmid/27723605&rft_ieee_id=7585081&rfr_iscdi=true