CO 2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion
Maximizing the conversion of biogenic carbon feedstocks into chemicals and fuels is essential for fermentation processes as feedstock costs and processing is commonly the greatest operating expense. Unfortunately, for most fermentations, over one-third of sugar carbon is lost to CO due to the decarb...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-09, Vol.7, p.12800 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 12800 |
container_title | Nature communications |
container_volume | 7 |
creator | Jones, Shawn W Fast, Alan G Carlson, Ellinor D Wiedel, Carrissa A Au, Jennifer Antoniewicz, Maciek R Papoutsakis, Eleftherios T Tracy, Bryan P |
description | Maximizing the conversion of biogenic carbon feedstocks into chemicals and fuels is essential for fermentation processes as feedstock costs and processing is commonly the greatest operating expense. Unfortunately, for most fermentations, over one-third of sugar carbon is lost to CO
due to the decarboxylation of pyruvate to acetyl-CoA and limitations in the reducing power of the bio-feedstock. Here we show that anaerobic, non-photosynthetic mixotrophy, defined as the concurrent utilization of organic (for example, sugars) and inorganic (for example, CO
) substrates in a single organism, can overcome these constraints to increase product yields and reduce overall CO
emissions. As a proof-of-concept, Clostridium ljungdahlii was engineered to produce acetone and achieved a mass yield 138% of the previous theoretical maximum using a high cell density continuous fermentation process. In addition, when enough reductant (that is, H
) is provided, the fermentation emits no CO
. Finally, we show that mixotrophy is a general trait among acetogens. |
doi_str_mv | 10.1038/ncomms12800 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_27687501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27687501</sourcerecordid><originalsourceid>FETCH-LOGICAL-p93t-98a7c0b2f273f311458484c2f17e2428b2c5e078f511022244c4b1b0e6ecbabd3</originalsourceid><addsrcrecordid>eNo1j11LwzAYhYMgbsxdeS_5A9W8b9IlvZTiFwx2M_ByJGlCIzYJaR3rv7egnpsDB54HDiF3wB6AcfUYbRqGEVAxdkXWyARUIJGvyHYcP9kS3oAS4oasUO6UrBmsyUd7oEh9uOgppEjNTHXUriQTLI0pVrlPUxrnOPVuWqYhXNJUUu5n6lOhYcglnV1HrS5mwW2KZ1fGxXRLrr3-Gt32rzfk-PJ8bN-q_eH1vX3aV7nhU9UoLS0z6FFyzwFErYQSFj1IhwKVQVs7JpWvARgiCmGFAcPczlmjTcc35P5Xm7_N4LpTLmHQZT79H-Q_E-NSeg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO 2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Jones, Shawn W ; Fast, Alan G ; Carlson, Ellinor D ; Wiedel, Carrissa A ; Au, Jennifer ; Antoniewicz, Maciek R ; Papoutsakis, Eleftherios T ; Tracy, Bryan P</creator><creatorcontrib>Jones, Shawn W ; Fast, Alan G ; Carlson, Ellinor D ; Wiedel, Carrissa A ; Au, Jennifer ; Antoniewicz, Maciek R ; Papoutsakis, Eleftherios T ; Tracy, Bryan P</creatorcontrib><description>Maximizing the conversion of biogenic carbon feedstocks into chemicals and fuels is essential for fermentation processes as feedstock costs and processing is commonly the greatest operating expense. Unfortunately, for most fermentations, over one-third of sugar carbon is lost to CO
due to the decarboxylation of pyruvate to acetyl-CoA and limitations in the reducing power of the bio-feedstock. Here we show that anaerobic, non-photosynthetic mixotrophy, defined as the concurrent utilization of organic (for example, sugars) and inorganic (for example, CO
) substrates in a single organism, can overcome these constraints to increase product yields and reduce overall CO
emissions. As a proof-of-concept, Clostridium ljungdahlii was engineered to produce acetone and achieved a mass yield 138% of the previous theoretical maximum using a high cell density continuous fermentation process. In addition, when enough reductant (that is, H
) is provided, the fermentation emits no CO
. Finally, we show that mixotrophy is a general trait among acetogens.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms12800</identifier><identifier>PMID: 27687501</identifier><language>eng</language><publisher>England</publisher><ispartof>Nature communications, 2016-09, Vol.7, p.12800</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27687501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Shawn W</creatorcontrib><creatorcontrib>Fast, Alan G</creatorcontrib><creatorcontrib>Carlson, Ellinor D</creatorcontrib><creatorcontrib>Wiedel, Carrissa A</creatorcontrib><creatorcontrib>Au, Jennifer</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R</creatorcontrib><creatorcontrib>Papoutsakis, Eleftherios T</creatorcontrib><creatorcontrib>Tracy, Bryan P</creatorcontrib><title>CO 2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Maximizing the conversion of biogenic carbon feedstocks into chemicals and fuels is essential for fermentation processes as feedstock costs and processing is commonly the greatest operating expense. Unfortunately, for most fermentations, over one-third of sugar carbon is lost to CO
due to the decarboxylation of pyruvate to acetyl-CoA and limitations in the reducing power of the bio-feedstock. Here we show that anaerobic, non-photosynthetic mixotrophy, defined as the concurrent utilization of organic (for example, sugars) and inorganic (for example, CO
) substrates in a single organism, can overcome these constraints to increase product yields and reduce overall CO
emissions. As a proof-of-concept, Clostridium ljungdahlii was engineered to produce acetone and achieved a mass yield 138% of the previous theoretical maximum using a high cell density continuous fermentation process. In addition, when enough reductant (that is, H
) is provided, the fermentation emits no CO
. Finally, we show that mixotrophy is a general trait among acetogens.</description><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1j11LwzAYhYMgbsxdeS_5A9W8b9IlvZTiFwx2M_ByJGlCIzYJaR3rv7egnpsDB54HDiF3wB6AcfUYbRqGEVAxdkXWyARUIJGvyHYcP9kS3oAS4oasUO6UrBmsyUd7oEh9uOgppEjNTHXUriQTLI0pVrlPUxrnOPVuWqYhXNJUUu5n6lOhYcglnV1HrS5mwW2KZ1fGxXRLrr3-Gt32rzfk-PJ8bN-q_eH1vX3aV7nhU9UoLS0z6FFyzwFErYQSFj1IhwKVQVs7JpWvARgiCmGFAcPczlmjTcc35P5Xm7_N4LpTLmHQZT79H-Q_E-NSeg</recordid><startdate>20160930</startdate><enddate>20160930</enddate><creator>Jones, Shawn W</creator><creator>Fast, Alan G</creator><creator>Carlson, Ellinor D</creator><creator>Wiedel, Carrissa A</creator><creator>Au, Jennifer</creator><creator>Antoniewicz, Maciek R</creator><creator>Papoutsakis, Eleftherios T</creator><creator>Tracy, Bryan P</creator><scope>NPM</scope></search><sort><creationdate>20160930</creationdate><title>CO 2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion</title><author>Jones, Shawn W ; Fast, Alan G ; Carlson, Ellinor D ; Wiedel, Carrissa A ; Au, Jennifer ; Antoniewicz, Maciek R ; Papoutsakis, Eleftherios T ; Tracy, Bryan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p93t-98a7c0b2f273f311458484c2f17e2428b2c5e078f511022244c4b1b0e6ecbabd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Shawn W</creatorcontrib><creatorcontrib>Fast, Alan G</creatorcontrib><creatorcontrib>Carlson, Ellinor D</creatorcontrib><creatorcontrib>Wiedel, Carrissa A</creatorcontrib><creatorcontrib>Au, Jennifer</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R</creatorcontrib><creatorcontrib>Papoutsakis, Eleftherios T</creatorcontrib><creatorcontrib>Tracy, Bryan P</creatorcontrib><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Shawn W</au><au>Fast, Alan G</au><au>Carlson, Ellinor D</au><au>Wiedel, Carrissa A</au><au>Au, Jennifer</au><au>Antoniewicz, Maciek R</au><au>Papoutsakis, Eleftherios T</au><au>Tracy, Bryan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO 2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2016-09-30</date><risdate>2016</risdate><volume>7</volume><spage>12800</spage><pages>12800-</pages><eissn>2041-1723</eissn><abstract>Maximizing the conversion of biogenic carbon feedstocks into chemicals and fuels is essential for fermentation processes as feedstock costs and processing is commonly the greatest operating expense. Unfortunately, for most fermentations, over one-third of sugar carbon is lost to CO
due to the decarboxylation of pyruvate to acetyl-CoA and limitations in the reducing power of the bio-feedstock. Here we show that anaerobic, non-photosynthetic mixotrophy, defined as the concurrent utilization of organic (for example, sugars) and inorganic (for example, CO
) substrates in a single organism, can overcome these constraints to increase product yields and reduce overall CO
emissions. As a proof-of-concept, Clostridium ljungdahlii was engineered to produce acetone and achieved a mass yield 138% of the previous theoretical maximum using a high cell density continuous fermentation process. In addition, when enough reductant (that is, H
) is provided, the fermentation emits no CO
. Finally, we show that mixotrophy is a general trait among acetogens.</abstract><cop>England</cop><pmid>27687501</pmid><doi>10.1038/ncomms12800</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2041-1723 |
ispartof | Nature communications, 2016-09, Vol.7, p.12800 |
issn | 2041-1723 |
language | eng |
recordid | cdi_pubmed_primary_27687501 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
title | CO 2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%202%20fixation%20by%20anaerobic%20non-photosynthetic%20mixotrophy%20for%20improved%20carbon%20conversion&rft.jtitle=Nature%20communications&rft.au=Jones,%20Shawn%20W&rft.date=2016-09-30&rft.volume=7&rft.spage=12800&rft.pages=12800-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms12800&rft_dat=%3Cpubmed%3E27687501%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27687501&rfr_iscdi=true |