Muscle–spring dynamics in time-limited, elastic movements
Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their mu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2016-09, Vol.283 (1838), p.20161561 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1838 |
container_start_page | 20161561 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 283 |
creator | Rosario, M. V. Sutton, G. P. Patek, S. N. Sawicki, G. S. |
description | Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle–spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle–spring systems. |
doi_str_mv | 10.1098/rspb.2016.1561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27629031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820596304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-8e8eba14f7673213eade2c48fc15b6ea86a2556c3cb7f289ffa7778a57f418413</originalsourceid><addsrcrecordid>eNp9kMuKFDEUhoMoTju6dSm1dGG1ObkXgqCDNxhRvKxDKn1qzFhVaZOqhp7VvINv6JOYttvBEXQVQv7z_ScfIfeBLoE25nHK63bJKKglSAU3yAKEhpo1UtwkC9ooVhsh2RG5k_M5pbSRRt4mR0wr1lAOC_Lk7Zx9jz8uv-d1CuNZtdqObgg-V2GspjBg3YchTLh6VGHv8hR8NcQNDjhO-S651bk-473DeUw-v3zx6eR1ffru1ZuTZ6e1l1xMtUGDrQPRaaU5A45uhcwL03mQrUJnlGNSKs99qztmmq5zWmvjpO4EGAH8mDzdc9dzO-DKl-7kelv2HVza2uiCvf4yhi_2LG6sLF9UyhTAwwMgxW8z5skOIXvsezdinLMFw6hsFKeiRJf7qE8x54TdVQ1QuzNud8btzrjdGS8DD_5c7ir-W3EJ8H0gxW2xFH3AaWvP45zGcv039uv_pj58fP98wwwPYLix1HCgEhhr7EVYH1CG25DzjPZX5Dr-77afDM6zUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820596304</pqid></control><display><type>article</type><title>Muscle–spring dynamics in time-limited, elastic movements</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Rosario, M. V. ; Sutton, G. P. ; Patek, S. N. ; Sawicki, G. S.</creator><creatorcontrib>Rosario, M. V. ; Sutton, G. P. ; Patek, S. N. ; Sawicki, G. S.</creatorcontrib><description>Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle–spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle–spring systems.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2016.1561</identifier><identifier>PMID: 27629031</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biomechanical Phenomena ; Elastic Energy Storage ; Fixed-End Contraction ; Grasshoppers - physiology ; Movement ; Muscle Contraction ; Muscle Dynamics ; Muscle, Skeletal - physiology ; Muscle–spring Interaction ; Ranidae - physiology ; Spring Stiffness ; Tendons - physiology ; Time-Limited Loading</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2016-09, Vol.283 (1838), p.20161561</ispartof><rights>2016 The Author(s)</rights><rights>2016 The Author(s).</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-8e8eba14f7673213eade2c48fc15b6ea86a2556c3cb7f289ffa7778a57f418413</citedby><cites>FETCH-LOGICAL-c534t-8e8eba14f7673213eade2c48fc15b6ea86a2556c3cb7f289ffa7778a57f418413</cites><orcidid>0000-0001-9969-6746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031668/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031668/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27629031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosario, M. V.</creatorcontrib><creatorcontrib>Sutton, G. P.</creatorcontrib><creatorcontrib>Patek, S. N.</creatorcontrib><creatorcontrib>Sawicki, G. S.</creatorcontrib><title>Muscle–spring dynamics in time-limited, elastic movements</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle–spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle–spring systems.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Elastic Energy Storage</subject><subject>Fixed-End Contraction</subject><subject>Grasshoppers - physiology</subject><subject>Movement</subject><subject>Muscle Contraction</subject><subject>Muscle Dynamics</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscle–spring Interaction</subject><subject>Ranidae - physiology</subject><subject>Spring Stiffness</subject><subject>Tendons - physiology</subject><subject>Time-Limited Loading</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMuKFDEUhoMoTju6dSm1dGG1ObkXgqCDNxhRvKxDKn1qzFhVaZOqhp7VvINv6JOYttvBEXQVQv7z_ScfIfeBLoE25nHK63bJKKglSAU3yAKEhpo1UtwkC9ooVhsh2RG5k_M5pbSRRt4mR0wr1lAOC_Lk7Zx9jz8uv-d1CuNZtdqObgg-V2GspjBg3YchTLh6VGHv8hR8NcQNDjhO-S651bk-473DeUw-v3zx6eR1ffru1ZuTZ6e1l1xMtUGDrQPRaaU5A45uhcwL03mQrUJnlGNSKs99qztmmq5zWmvjpO4EGAH8mDzdc9dzO-DKl-7kelv2HVza2uiCvf4yhi_2LG6sLF9UyhTAwwMgxW8z5skOIXvsezdinLMFw6hsFKeiRJf7qE8x54TdVQ1QuzNud8btzrjdGS8DD_5c7ir-W3EJ8H0gxW2xFH3AaWvP45zGcv039uv_pj58fP98wwwPYLix1HCgEhhr7EVYH1CG25DzjPZX5Dr-77afDM6zUA</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Rosario, M. V.</creator><creator>Sutton, G. P.</creator><creator>Patek, S. N.</creator><creator>Sawicki, G. S.</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9969-6746</orcidid></search><sort><creationdate>20160914</creationdate><title>Muscle–spring dynamics in time-limited, elastic movements</title><author>Rosario, M. V. ; Sutton, G. P. ; Patek, S. N. ; Sawicki, G. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-8e8eba14f7673213eade2c48fc15b6ea86a2556c3cb7f289ffa7778a57f418413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Elastic Energy Storage</topic><topic>Fixed-End Contraction</topic><topic>Grasshoppers - physiology</topic><topic>Movement</topic><topic>Muscle Contraction</topic><topic>Muscle Dynamics</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscle–spring Interaction</topic><topic>Ranidae - physiology</topic><topic>Spring Stiffness</topic><topic>Tendons - physiology</topic><topic>Time-Limited Loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosario, M. V.</creatorcontrib><creatorcontrib>Sutton, G. P.</creatorcontrib><creatorcontrib>Patek, S. N.</creatorcontrib><creatorcontrib>Sawicki, G. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosario, M. V.</au><au>Sutton, G. P.</au><au>Patek, S. N.</au><au>Sawicki, G. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muscle–spring dynamics in time-limited, elastic movements</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2016-09-14</date><risdate>2016</risdate><volume>283</volume><issue>1838</issue><spage>20161561</spage><pages>20161561-</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle–spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle–spring systems.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>27629031</pmid><doi>10.1098/rspb.2016.1561</doi><orcidid>https://orcid.org/0000-0001-9969-6746</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2016-09, Vol.283 (1838), p.20161561 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_pubmed_primary_27629031 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central |
subjects | Animals Biomechanical Phenomena Elastic Energy Storage Fixed-End Contraction Grasshoppers - physiology Movement Muscle Contraction Muscle Dynamics Muscle, Skeletal - physiology Muscle–spring Interaction Ranidae - physiology Spring Stiffness Tendons - physiology Time-Limited Loading |
title | Muscle–spring dynamics in time-limited, elastic movements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muscle%E2%80%93spring%20dynamics%20in%20time-limited,%20elastic%20movements&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Rosario,%20M.%20V.&rft.date=2016-09-14&rft.volume=283&rft.issue=1838&rft.spage=20161561&rft.pages=20161561-&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2016.1561&rft_dat=%3Cproquest_pubme%3E1820596304%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820596304&rft_id=info:pmid/27629031&rfr_iscdi=true |