Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture
A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2016-08, Vol.87 (8), p.085114-085114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 085114 |
---|---|
container_issue | 8 |
container_start_page | 085114 |
container_title | Review of scientific instruments |
container_volume | 87 |
creator | Janardhanraj, S. Jagadeesh, G. |
description | A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications. |
doi_str_mv | 10.1063/1.4960961 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27587167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816635649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-dfa2082eb294c0ae659fb5e90d16623282ca7c9de9f6eb02e7e1a751aec535b03</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhwB9AlrgAUorHiZ34iMpXpUpc4Gw5zoR1SezFdlbdf18vu2wPlTqXkUaPnpnRS8hrYBfAZP0RLholmZLwhKyAdapqJa-fkhVjdVPJtunOyIuUblgpAfCcnPFWdC3IdkW2n3GLU9jM6DMNIzXUhzKgs_PO5CUiHTAHb7ILvhqi26KnaR3sH5qXHqlJCed-2tG8NpkuCRN1BXB5ob_RYzQZBxpud-vdEEOZFO_t3vqSPBvNlPDVsZ-TX1-__Lz8Xl3_-HZ1-em6sg1ArobRcNZx7LlqLDMohRp7gYoNIMuLvOPWtFYNqEaJPePYIphWgEEratGz-py8PXhDyk4n6zLatQ3eo82ac6Fa2YlCvTtQmxj-Lpiynl2yOE3GY1iShq6sq4Vs1L3whN6EJfryg-bAQSoBYi98f6BsDClFHPUmutnEnQam95Fp0MfICvvmaFz6GYcT-T-jAnw4APvz_wVxYrYh3pv0Zhgfgx-uvgPmgK4W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121695155</pqid></control><display><type>article</type><title>Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Janardhanraj, S. ; Jagadeesh, G.</creator><creatorcontrib>Janardhanraj, S. ; Jagadeesh, G.</creatorcontrib><description>A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4960961</identifier><identifier>PMID: 27587167</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Assembly ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Clover ; Detonation ; DIAPHRAGM ; Diaphragms (mechanics) ; ELECTROLYSIS ; EXPLOSIONS ; FASTENERS ; FLEXIBILITY ; FORECASTING ; GASES ; HYDROGEN ; HYDROGEN COMPOUNDS ; Hydrogen storage ; MIXTURES ; Scientific apparatus & instruments ; SHOCK WAVES ; STOICHIOMETRY ; WASTE DISPOSAL</subject><ispartof>Review of scientific instruments, 2016-08, Vol.87 (8), p.085114-085114</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-dfa2082eb294c0ae659fb5e90d16623282ca7c9de9f6eb02e7e1a751aec535b03</citedby><cites>FETCH-LOGICAL-c411t-dfa2082eb294c0ae659fb5e90d16623282ca7c9de9f6eb02e7e1a751aec535b03</cites><orcidid>0000-0002-1069-1306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4960961$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27587167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22597685$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Janardhanraj, S.</creatorcontrib><creatorcontrib>Jagadeesh, G.</creatorcontrib><title>Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.</description><subject>Assembly</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Clover</subject><subject>Detonation</subject><subject>DIAPHRAGM</subject><subject>Diaphragms (mechanics)</subject><subject>ELECTROLYSIS</subject><subject>EXPLOSIONS</subject><subject>FASTENERS</subject><subject>FLEXIBILITY</subject><subject>FORECASTING</subject><subject>GASES</subject><subject>HYDROGEN</subject><subject>HYDROGEN COMPOUNDS</subject><subject>Hydrogen storage</subject><subject>MIXTURES</subject><subject>Scientific apparatus & instruments</subject><subject>SHOCK WAVES</subject><subject>STOICHIOMETRY</subject><subject>WASTE DISPOSAL</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhwB9AlrgAUorHiZ34iMpXpUpc4Gw5zoR1SezFdlbdf18vu2wPlTqXkUaPnpnRS8hrYBfAZP0RLholmZLwhKyAdapqJa-fkhVjdVPJtunOyIuUblgpAfCcnPFWdC3IdkW2n3GLU9jM6DMNIzXUhzKgs_PO5CUiHTAHb7ILvhqi26KnaR3sH5qXHqlJCed-2tG8NpkuCRN1BXB5ob_RYzQZBxpud-vdEEOZFO_t3vqSPBvNlPDVsZ-TX1-__Lz8Xl3_-HZ1-em6sg1ArobRcNZx7LlqLDMohRp7gYoNIMuLvOPWtFYNqEaJPePYIphWgEEratGz-py8PXhDyk4n6zLatQ3eo82ac6Fa2YlCvTtQmxj-Lpiynl2yOE3GY1iShq6sq4Vs1L3whN6EJfryg-bAQSoBYi98f6BsDClFHPUmutnEnQam95Fp0MfICvvmaFz6GYcT-T-jAnw4APvz_wVxYrYh3pv0Zhgfgx-uvgPmgK4W</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Janardhanraj, S.</creator><creator>Jagadeesh, G.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1069-1306</orcidid></search><sort><creationdate>20160801</creationdate><title>Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture</title><author>Janardhanraj, S. ; Jagadeesh, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-dfa2082eb294c0ae659fb5e90d16623282ca7c9de9f6eb02e7e1a751aec535b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Assembly</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Clover</topic><topic>Detonation</topic><topic>DIAPHRAGM</topic><topic>Diaphragms (mechanics)</topic><topic>ELECTROLYSIS</topic><topic>EXPLOSIONS</topic><topic>FASTENERS</topic><topic>FLEXIBILITY</topic><topic>FORECASTING</topic><topic>GASES</topic><topic>HYDROGEN</topic><topic>HYDROGEN COMPOUNDS</topic><topic>Hydrogen storage</topic><topic>MIXTURES</topic><topic>Scientific apparatus & instruments</topic><topic>SHOCK WAVES</topic><topic>STOICHIOMETRY</topic><topic>WASTE DISPOSAL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janardhanraj, S.</creatorcontrib><creatorcontrib>Jagadeesh, G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janardhanraj, S.</au><au>Jagadeesh, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>87</volume><issue>8</issue><spage>085114</spage><epage>085114</epage><pages>085114-085114</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27587167</pmid><doi>10.1063/1.4960961</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1069-1306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2016-08, Vol.87 (8), p.085114-085114 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_pubmed_primary_27587167 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Assembly CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Clover Detonation DIAPHRAGM Diaphragms (mechanics) ELECTROLYSIS EXPLOSIONS FASTENERS FLEXIBILITY FORECASTING GASES HYDROGEN HYDROGEN COMPOUNDS Hydrogen storage MIXTURES Scientific apparatus & instruments SHOCK WAVES STOICHIOMETRY WASTE DISPOSAL |
title | Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20novel%20miniature%20detonation-driven%20shock%20tube%20assembly%20that%20uses%20in%20situ%20generated%20oxyhydrogen%20mixture&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Janardhanraj,%20S.&rft.date=2016-08-01&rft.volume=87&rft.issue=8&rft.spage=085114&rft.epage=085114&rft.pages=085114-085114&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4960961&rft_dat=%3Cproquest_pubme%3E1816635649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121695155&rft_id=info:pmid/27587167&rfr_iscdi=true |