Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture

A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2016-08, Vol.87 (8), p.085114-085114
Hauptverfasser: Janardhanraj, S., Jagadeesh, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 085114
container_issue 8
container_start_page 085114
container_title Review of scientific instruments
container_volume 87
creator Janardhanraj, S.
Jagadeesh, G.
description A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.
doi_str_mv 10.1063/1.4960961
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27587167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816635649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-dfa2082eb294c0ae659fb5e90d16623282ca7c9de9f6eb02e7e1a751aec535b03</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhwB9AlrgAUorHiZ34iMpXpUpc4Gw5zoR1SezFdlbdf18vu2wPlTqXkUaPnpnRS8hrYBfAZP0RLholmZLwhKyAdapqJa-fkhVjdVPJtunOyIuUblgpAfCcnPFWdC3IdkW2n3GLU9jM6DMNIzXUhzKgs_PO5CUiHTAHb7ILvhqi26KnaR3sH5qXHqlJCed-2tG8NpkuCRN1BXB5ob_RYzQZBxpud-vdEEOZFO_t3vqSPBvNlPDVsZ-TX1-__Lz8Xl3_-HZ1-em6sg1ArobRcNZx7LlqLDMohRp7gYoNIMuLvOPWtFYNqEaJPePYIphWgEEratGz-py8PXhDyk4n6zLatQ3eo82ac6Fa2YlCvTtQmxj-Lpiynl2yOE3GY1iShq6sq4Vs1L3whN6EJfryg-bAQSoBYi98f6BsDClFHPUmutnEnQam95Fp0MfICvvmaFz6GYcT-T-jAnw4APvz_wVxYrYh3pv0Zhgfgx-uvgPmgK4W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121695155</pqid></control><display><type>article</type><title>Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Janardhanraj, S. ; Jagadeesh, G.</creator><creatorcontrib>Janardhanraj, S. ; Jagadeesh, G.</creatorcontrib><description>A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4960961</identifier><identifier>PMID: 27587167</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Assembly ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Clover ; Detonation ; DIAPHRAGM ; Diaphragms (mechanics) ; ELECTROLYSIS ; EXPLOSIONS ; FASTENERS ; FLEXIBILITY ; FORECASTING ; GASES ; HYDROGEN ; HYDROGEN COMPOUNDS ; Hydrogen storage ; MIXTURES ; Scientific apparatus &amp; instruments ; SHOCK WAVES ; STOICHIOMETRY ; WASTE DISPOSAL</subject><ispartof>Review of scientific instruments, 2016-08, Vol.87 (8), p.085114-085114</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-dfa2082eb294c0ae659fb5e90d16623282ca7c9de9f6eb02e7e1a751aec535b03</citedby><cites>FETCH-LOGICAL-c411t-dfa2082eb294c0ae659fb5e90d16623282ca7c9de9f6eb02e7e1a751aec535b03</cites><orcidid>0000-0002-1069-1306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4960961$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27587167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22597685$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Janardhanraj, S.</creatorcontrib><creatorcontrib>Jagadeesh, G.</creatorcontrib><title>Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.</description><subject>Assembly</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Clover</subject><subject>Detonation</subject><subject>DIAPHRAGM</subject><subject>Diaphragms (mechanics)</subject><subject>ELECTROLYSIS</subject><subject>EXPLOSIONS</subject><subject>FASTENERS</subject><subject>FLEXIBILITY</subject><subject>FORECASTING</subject><subject>GASES</subject><subject>HYDROGEN</subject><subject>HYDROGEN COMPOUNDS</subject><subject>Hydrogen storage</subject><subject>MIXTURES</subject><subject>Scientific apparatus &amp; instruments</subject><subject>SHOCK WAVES</subject><subject>STOICHIOMETRY</subject><subject>WASTE DISPOSAL</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhwB9AlrgAUorHiZ34iMpXpUpc4Gw5zoR1SezFdlbdf18vu2wPlTqXkUaPnpnRS8hrYBfAZP0RLholmZLwhKyAdapqJa-fkhVjdVPJtunOyIuUblgpAfCcnPFWdC3IdkW2n3GLU9jM6DMNIzXUhzKgs_PO5CUiHTAHb7ILvhqi26KnaR3sH5qXHqlJCed-2tG8NpkuCRN1BXB5ob_RYzQZBxpud-vdEEOZFO_t3vqSPBvNlPDVsZ-TX1-__Lz8Xl3_-HZ1-em6sg1ArobRcNZx7LlqLDMohRp7gYoNIMuLvOPWtFYNqEaJPePYIphWgEEratGz-py8PXhDyk4n6zLatQ3eo82ac6Fa2YlCvTtQmxj-Lpiynl2yOE3GY1iShq6sq4Vs1L3whN6EJfryg-bAQSoBYi98f6BsDClFHPUmutnEnQam95Fp0MfICvvmaFz6GYcT-T-jAnw4APvz_wVxYrYh3pv0Zhgfgx-uvgPmgK4W</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Janardhanraj, S.</creator><creator>Jagadeesh, G.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1069-1306</orcidid></search><sort><creationdate>20160801</creationdate><title>Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture</title><author>Janardhanraj, S. ; Jagadeesh, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-dfa2082eb294c0ae659fb5e90d16623282ca7c9de9f6eb02e7e1a751aec535b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Assembly</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Clover</topic><topic>Detonation</topic><topic>DIAPHRAGM</topic><topic>Diaphragms (mechanics)</topic><topic>ELECTROLYSIS</topic><topic>EXPLOSIONS</topic><topic>FASTENERS</topic><topic>FLEXIBILITY</topic><topic>FORECASTING</topic><topic>GASES</topic><topic>HYDROGEN</topic><topic>HYDROGEN COMPOUNDS</topic><topic>Hydrogen storage</topic><topic>MIXTURES</topic><topic>Scientific apparatus &amp; instruments</topic><topic>SHOCK WAVES</topic><topic>STOICHIOMETRY</topic><topic>WASTE DISPOSAL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janardhanraj, S.</creatorcontrib><creatorcontrib>Jagadeesh, G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janardhanraj, S.</au><au>Jagadeesh, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>87</volume><issue>8</issue><spage>085114</spage><epage>085114</epage><pages>085114-085114</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27587167</pmid><doi>10.1063/1.4960961</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1069-1306</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2016-08, Vol.87 (8), p.085114-085114
issn 0034-6748
1089-7623
language eng
recordid cdi_pubmed_primary_27587167
source AIP Journals Complete; Alma/SFX Local Collection
subjects Assembly
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Clover
Detonation
DIAPHRAGM
Diaphragms (mechanics)
ELECTROLYSIS
EXPLOSIONS
FASTENERS
FLEXIBILITY
FORECASTING
GASES
HYDROGEN
HYDROGEN COMPOUNDS
Hydrogen storage
MIXTURES
Scientific apparatus & instruments
SHOCK WAVES
STOICHIOMETRY
WASTE DISPOSAL
title Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20novel%20miniature%20detonation-driven%20shock%20tube%20assembly%20that%20uses%20in%20situ%20generated%20oxyhydrogen%20mixture&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Janardhanraj,%20S.&rft.date=2016-08-01&rft.volume=87&rft.issue=8&rft.spage=085114&rft.epage=085114&rft.pages=085114-085114&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4960961&rft_dat=%3Cproquest_pubme%3E1816635649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121695155&rft_id=info:pmid/27587167&rfr_iscdi=true