Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells

ATP-binding cassette (ABC) membrane transporters exist in all living organisms and play key roles in a wide range of cellular and physiological functions. The ABC transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, leading to multidrug resistanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2016-01, Vol.6 (43), p.36794-3682
Hauptverfasser: Browning, Lauren M, Lee, Kerry J, Cherukuri, Pavan K, Nallathamby, Prakash D, Warren, Seth, Jault, Jean-Michel, Xu, Xiao-Hong Nancy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3682
container_issue 43
container_start_page 36794
container_title RSC advances
container_volume 6
creator Browning, Lauren M
Lee, Kerry J
Cherukuri, Pavan K
Nallathamby, Prakash D
Warren, Seth
Jault, Jean-Michel
Xu, Xiao-Hong Nancy
description ATP-binding cassette (ABC) membrane transporters exist in all living organisms and play key roles in a wide range of cellular and physiological functions. The ABC transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, leading to multidrug resistance. Despite extensive study, their efflux molecular mechanisms remain elusive. In this study, we synthesized and characterized purified silver nanoparticles (Ag NPs) (97 13 nm in diameter), and used them as photostable optical imaging probes to study efflux kinetics of ABC membrane transporters (BmrA) of single live cells (B. subtilis ). The NPs with concentrations up to 3.7 pM were stable (non-aggregated) in a PBS buffer and biocompatible with the cells. We found a high dependence of accumulation of the intracellular NPs in single live cells (WT, Ct-BmrA-EGFP, BmrA) upon the cellular expression level of BmrA and NP concentration (0.93, 1.85 and 3.7 pM), showing the highest accumulation of intracellular NPs in BmrA (deletion of BmrA) and the lowest ones in Ct-BmrA-EGFP (over-expression of BmrA). Interestingly, the accumulation of intracellular NPs in BmrA increases nearly proportionally with the NP concentration, while those in WT and Ct-BmrA-EGFP do not. This result suggests that the NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane and they are extruded out of cells by BmrA transporters, similar to conventional pump substrates (antibiotics). This study shows that such large substrates (84100 nm NPs) can enter into the live cells and be extruded out of the cells by BmrA, and the NPs can serve as nm-sized optical imaging probes to study the size-dependent efflux kinetics of membrane transporters in single live cells in real time. Single plasmonic nanoparticles for imaging of efflux function of multidrug membrane transporters of single live cells.
doi_str_mv 10.1039/c6ra05895g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27570617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808081979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-cf3fdae69d9dc3e0370ca278325bc80430e2e9d85c7a40f6e326c114aae82a103</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbKl98V3JowiruUwykxdhu9gqFAQvzyGbOdlGMsmYZIr7Cfzazbh1rW8mkNv58c-5Nc1zgt8QzORbI5LGvJd896g5pbgVK4qFfPzgfNKc5_wd1yE4oYI8bU5oxzssSHfa_Priws4DCjrESafiTL1MXucxBmdQnsCUFLOJ0x7ZmFAu87BH0aJyAwis9fNPZOdgiotheR5nX9yQ5h1aX2zQCOM26QCo1DVPMRVIecHy4VfvbgEZ8D4_a55Y7TOc3-9nzbfL9183H1bXn64-btbXK9MyVlbGMjtoEHKQg2GAWYeNpl3PKN-aHrcMAwU59Nx0usVWAKPCENJqDT3VNWFnzbuD7jRvRxgMhOqaV1Nyo057FbVT_1qCu1G7eKtaKSXlsgq8uhdI8ccMuajR5SWEGmacsyI946IXXJD_QHGdRHaL6usDamqycwJ79IhgtdRZbcTn9e86X1X45cMYjuifqlbgxQFI2RytfxuF3QFkw7Dz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808081979</pqid></control><display><type>article</type><title>Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Browning, Lauren M ; Lee, Kerry J ; Cherukuri, Pavan K ; Nallathamby, Prakash D ; Warren, Seth ; Jault, Jean-Michel ; Xu, Xiao-Hong Nancy</creator><creatorcontrib>Browning, Lauren M ; Lee, Kerry J ; Cherukuri, Pavan K ; Nallathamby, Prakash D ; Warren, Seth ; Jault, Jean-Michel ; Xu, Xiao-Hong Nancy</creatorcontrib><description>ATP-binding cassette (ABC) membrane transporters exist in all living organisms and play key roles in a wide range of cellular and physiological functions. The ABC transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, leading to multidrug resistance. Despite extensive study, their efflux molecular mechanisms remain elusive. In this study, we synthesized and characterized purified silver nanoparticles (Ag NPs) (97 13 nm in diameter), and used them as photostable optical imaging probes to study efflux kinetics of ABC membrane transporters (BmrA) of single live cells (B. subtilis ). The NPs with concentrations up to 3.7 pM were stable (non-aggregated) in a PBS buffer and biocompatible with the cells. We found a high dependence of accumulation of the intracellular NPs in single live cells (WT, Ct-BmrA-EGFP, BmrA) upon the cellular expression level of BmrA and NP concentration (0.93, 1.85 and 3.7 pM), showing the highest accumulation of intracellular NPs in BmrA (deletion of BmrA) and the lowest ones in Ct-BmrA-EGFP (over-expression of BmrA). Interestingly, the accumulation of intracellular NPs in BmrA increases nearly proportionally with the NP concentration, while those in WT and Ct-BmrA-EGFP do not. This result suggests that the NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane and they are extruded out of cells by BmrA transporters, similar to conventional pump substrates (antibiotics). This study shows that such large substrates (84100 nm NPs) can enter into the live cells and be extruded out of the cells by BmrA, and the NPs can serve as nm-sized optical imaging probes to study the size-dependent efflux kinetics of membrane transporters in single live cells in real time. Single plasmonic nanoparticles for imaging of efflux function of multidrug membrane transporters of single live cells.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c6ra05895g</identifier><identifier>PMID: 27570617</identifier><language>eng</language><publisher>England</publisher><subject>Cellular ; Efflux ; Extrusion ; Imaging ; Membranes ; Nanoparticles ; Silver ; Substrates</subject><ispartof>RSC advances, 2016-01, Vol.6 (43), p.36794-3682</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-cf3fdae69d9dc3e0370ca278325bc80430e2e9d85c7a40f6e326c114aae82a103</citedby><cites>FETCH-LOGICAL-c433t-cf3fdae69d9dc3e0370ca278325bc80430e2e9d85c7a40f6e326c114aae82a103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27570617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Browning, Lauren M</creatorcontrib><creatorcontrib>Lee, Kerry J</creatorcontrib><creatorcontrib>Cherukuri, Pavan K</creatorcontrib><creatorcontrib>Nallathamby, Prakash D</creatorcontrib><creatorcontrib>Warren, Seth</creatorcontrib><creatorcontrib>Jault, Jean-Michel</creatorcontrib><creatorcontrib>Xu, Xiao-Hong Nancy</creatorcontrib><title>Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>ATP-binding cassette (ABC) membrane transporters exist in all living organisms and play key roles in a wide range of cellular and physiological functions. The ABC transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, leading to multidrug resistance. Despite extensive study, their efflux molecular mechanisms remain elusive. In this study, we synthesized and characterized purified silver nanoparticles (Ag NPs) (97 13 nm in diameter), and used them as photostable optical imaging probes to study efflux kinetics of ABC membrane transporters (BmrA) of single live cells (B. subtilis ). The NPs with concentrations up to 3.7 pM were stable (non-aggregated) in a PBS buffer and biocompatible with the cells. We found a high dependence of accumulation of the intracellular NPs in single live cells (WT, Ct-BmrA-EGFP, BmrA) upon the cellular expression level of BmrA and NP concentration (0.93, 1.85 and 3.7 pM), showing the highest accumulation of intracellular NPs in BmrA (deletion of BmrA) and the lowest ones in Ct-BmrA-EGFP (over-expression of BmrA). Interestingly, the accumulation of intracellular NPs in BmrA increases nearly proportionally with the NP concentration, while those in WT and Ct-BmrA-EGFP do not. This result suggests that the NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane and they are extruded out of cells by BmrA transporters, similar to conventional pump substrates (antibiotics). This study shows that such large substrates (84100 nm NPs) can enter into the live cells and be extruded out of the cells by BmrA, and the NPs can serve as nm-sized optical imaging probes to study the size-dependent efflux kinetics of membrane transporters in single live cells in real time. Single plasmonic nanoparticles for imaging of efflux function of multidrug membrane transporters of single live cells.</description><subject>Cellular</subject><subject>Efflux</subject><subject>Extrusion</subject><subject>Imaging</subject><subject>Membranes</subject><subject>Nanoparticles</subject><subject>Silver</subject><subject>Substrates</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkltrFDEUxwdRbKl98V3JowiruUwykxdhu9gqFAQvzyGbOdlGMsmYZIr7Cfzazbh1rW8mkNv58c-5Nc1zgt8QzORbI5LGvJd896g5pbgVK4qFfPzgfNKc5_wd1yE4oYI8bU5oxzssSHfa_Priws4DCjrESafiTL1MXucxBmdQnsCUFLOJ0x7ZmFAu87BH0aJyAwis9fNPZOdgiotheR5nX9yQ5h1aX2zQCOM26QCo1DVPMRVIecHy4VfvbgEZ8D4_a55Y7TOc3-9nzbfL9183H1bXn64-btbXK9MyVlbGMjtoEHKQg2GAWYeNpl3PKN-aHrcMAwU59Nx0usVWAKPCENJqDT3VNWFnzbuD7jRvRxgMhOqaV1Nyo057FbVT_1qCu1G7eKtaKSXlsgq8uhdI8ccMuajR5SWEGmacsyI946IXXJD_QHGdRHaL6usDamqycwJ79IhgtdRZbcTn9e86X1X45cMYjuifqlbgxQFI2RytfxuF3QFkw7Dz</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Browning, Lauren M</creator><creator>Lee, Kerry J</creator><creator>Cherukuri, Pavan K</creator><creator>Nallathamby, Prakash D</creator><creator>Warren, Seth</creator><creator>Jault, Jean-Michel</creator><creator>Xu, Xiao-Hong Nancy</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells</title><author>Browning, Lauren M ; Lee, Kerry J ; Cherukuri, Pavan K ; Nallathamby, Prakash D ; Warren, Seth ; Jault, Jean-Michel ; Xu, Xiao-Hong Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-cf3fdae69d9dc3e0370ca278325bc80430e2e9d85c7a40f6e326c114aae82a103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cellular</topic><topic>Efflux</topic><topic>Extrusion</topic><topic>Imaging</topic><topic>Membranes</topic><topic>Nanoparticles</topic><topic>Silver</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Browning, Lauren M</creatorcontrib><creatorcontrib>Lee, Kerry J</creatorcontrib><creatorcontrib>Cherukuri, Pavan K</creatorcontrib><creatorcontrib>Nallathamby, Prakash D</creatorcontrib><creatorcontrib>Warren, Seth</creatorcontrib><creatorcontrib>Jault, Jean-Michel</creatorcontrib><creatorcontrib>Xu, Xiao-Hong Nancy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browning, Lauren M</au><au>Lee, Kerry J</au><au>Cherukuri, Pavan K</au><au>Nallathamby, Prakash D</au><au>Warren, Seth</au><au>Jault, Jean-Michel</au><au>Xu, Xiao-Hong Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>6</volume><issue>43</issue><spage>36794</spage><epage>3682</epage><pages>36794-3682</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>ATP-binding cassette (ABC) membrane transporters exist in all living organisms and play key roles in a wide range of cellular and physiological functions. The ABC transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, leading to multidrug resistance. Despite extensive study, their efflux molecular mechanisms remain elusive. In this study, we synthesized and characterized purified silver nanoparticles (Ag NPs) (97 13 nm in diameter), and used them as photostable optical imaging probes to study efflux kinetics of ABC membrane transporters (BmrA) of single live cells (B. subtilis ). The NPs with concentrations up to 3.7 pM were stable (non-aggregated) in a PBS buffer and biocompatible with the cells. We found a high dependence of accumulation of the intracellular NPs in single live cells (WT, Ct-BmrA-EGFP, BmrA) upon the cellular expression level of BmrA and NP concentration (0.93, 1.85 and 3.7 pM), showing the highest accumulation of intracellular NPs in BmrA (deletion of BmrA) and the lowest ones in Ct-BmrA-EGFP (over-expression of BmrA). Interestingly, the accumulation of intracellular NPs in BmrA increases nearly proportionally with the NP concentration, while those in WT and Ct-BmrA-EGFP do not. This result suggests that the NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane and they are extruded out of cells by BmrA transporters, similar to conventional pump substrates (antibiotics). This study shows that such large substrates (84100 nm NPs) can enter into the live cells and be extruded out of the cells by BmrA, and the NPs can serve as nm-sized optical imaging probes to study the size-dependent efflux kinetics of membrane transporters in single live cells in real time. Single plasmonic nanoparticles for imaging of efflux function of multidrug membrane transporters of single live cells.</abstract><cop>England</cop><pmid>27570617</pmid><doi>10.1039/c6ra05895g</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2016-01, Vol.6 (43), p.36794-3682
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_27570617
source Royal Society Of Chemistry Journals 2008-
subjects Cellular
Efflux
Extrusion
Imaging
Membranes
Nanoparticles
Silver
Substrates
title Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20nanoparticle%20plasmonic%20spectroscopy%20for%20study%20of%20the%20efflux%20function%20of%20multidrug%20ABC%20membrane%20transporters%20of%20single%20live%20cells&rft.jtitle=RSC%20advances&rft.au=Browning,%20Lauren%20M&rft.date=2016-01-01&rft.volume=6&rft.issue=43&rft.spage=36794&rft.epage=3682&rft.pages=36794-3682&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c6ra05895g&rft_dat=%3Cproquest_pubme%3E1808081979%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808081979&rft_id=info:pmid/27570617&rfr_iscdi=true