Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent
The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV–visible spectra, w...
Gespeichert in:
Veröffentlicht in: | IET nanobiotechnology 2016-08, Vol.10 (4), p.200-205 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 4 |
container_start_page | 200 |
container_title | IET nanobiotechnology |
container_volume | 10 |
creator | Santos, Carolina Alves dos Seckler, Marcelo Martins Ingle, Avinash P Rai, Mahendra |
description | The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV–visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X-ray diffraction pattern confirmed the presence of face-centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5–40 and 10–70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential. |
doi_str_mv | 10.1049/iet-nbt.2015.0055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmed_primary_27463790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819141481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5880-493cc0fb2505f13d1a67b5869ed768481ba937546a2efe869642970d9d3384013</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEoqXwAFyQj3DIYsdx4nBAalfdUqmCyyJxsxzH2Z3KsRfb2SqPwRvjdMuqSCA4ecb-_n_G-rPsNcELgsvmPeiY2zYuCkzYAmPGnmSnpGYk5zX79vRYl-QkexHC7Uwwyp9nJ0VdVrRu8Gn2Y-mGnfQywl4jaSO0UkXtQRqUCthDnJDrUQCz1x5ZaV2iIyijAwqTjVsdIOgOtRNqwRm3ATVLbYfUVg_3jXdjTPQdxC3amdE7CwqtKo5kQBKFKFswEMBukNxoG19mz3ppgn71cJ5lX1eX6-Wn_ObL1fXy_CZXjHOclw1VCvdtwTDrCe2IrOqW8arRXV3xkpNWNrRmZSUL3et0X5VFU-Ou6SjlJSb0LPt48N2N7aA7lUZ7acTOwyD9JJwE8fuLha3YuL3gVV1RxpPB2wcD776POkQxQFDaGGm1G4MgnLKqaBgt_gMlDSlJ2jqh5IAq70Lwuj9uRLCYUxcpdZFSF3PqYs40ad48_spR8SvmBHw4AHdg9PRvR_H5Yl1crHDqZ_G7g3jGbt3obYpFXF-uZ-qRZtf1ic3_wP59858tTduF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819141481</pqid></control><display><type>article</type><title>Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent</title><source>Wiley Online Library (Open Access Collection)</source><creator>Santos, Carolina Alves dos ; Seckler, Marcelo Martins ; Ingle, Avinash P ; Rai, Mahendra</creator><creatorcontrib>Santos, Carolina Alves dos ; Seckler, Marcelo Martins ; Ingle, Avinash P ; Rai, Mahendra</creatorcontrib><description>The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV–visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X-ray diffraction pattern confirmed the presence of face-centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5–40 and 10–70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential.</description><identifier>ISSN: 1751-8741</identifier><identifier>ISSN: 1751-875X</identifier><identifier>EISSN: 1751-875X</identifier><identifier>DOI: 10.1049/iet-nbt.2015.0055</identifier><identifier>PMID: 27463790</identifier><language>eng</language><publisher>England: The Institution of Engineering and Technology</publisher><subject>Anti-Bacterial Agents - administration & dosage ; Anti-Bacterial Agents - chemical synthesis ; antibacterial activity ; antibacterial efficacy ; Antibacterial properties ; Antiinfectives and antibacterials ; Bacterial Physiological Phenomena - drug effects ; biogenic silver nanoparticles ; biological synthesis ; biomedical materials ; Cell Survival - drug effects ; chemical synthesis ; comparative antibacterial activity ; Dose-Response Relationship, Drug ; Drug Compounding - methods ; Drug Synergism ; Effectiveness ; Escherichia coli ; Excipients - chemistry ; face‐centred cubic structure ; FCC plane ; Fusarium oxysporum ; materials preparation ; Metal Nanoparticles - administration & dosage ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; nanofabrication ; nanomedicine ; Nanoparticles ; Particle Size ; pluronic F68 ; Poloxamer - chemical synthesis ; Pseudomonas aeruginosa ; scanning electron microscopy ; silver ; Silver - administration & dosage ; Silver - chemistry ; size 10 nm to 70 nm ; size 5 nm to 40 nm ; Spectra ; spherical silver nanoparticles ; stabilising agent ; Staphylococcus aureus ; synergism ; transmission electron microscopy ; ultraviolet spectra ; UV‐visible spectra ; visible spectra ; wavelength 420 nm ; X‐ray diffraction ; X‐ray diffraction pattern</subject><ispartof>IET nanobiotechnology, 2016-08, Vol.10 (4), p.200-205</ispartof><rights>The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5880-493cc0fb2505f13d1a67b5869ed768481ba937546a2efe869642970d9d3384013</citedby><cites>FETCH-LOGICAL-c5880-493cc0fb2505f13d1a67b5869ed768481ba937546a2efe869642970d9d3384013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676358/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676358/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,11567,27929,27930,45579,45580,46057,46481,53796,53798</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-nbt.2015.0055$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27463790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Carolina Alves dos</creatorcontrib><creatorcontrib>Seckler, Marcelo Martins</creatorcontrib><creatorcontrib>Ingle, Avinash P</creatorcontrib><creatorcontrib>Rai, Mahendra</creatorcontrib><title>Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent</title><title>IET nanobiotechnology</title><addtitle>IET Nanobiotechnol</addtitle><description>The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV–visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X-ray diffraction pattern confirmed the presence of face-centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5–40 and 10–70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential.</description><subject>Anti-Bacterial Agents - administration & dosage</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>antibacterial activity</subject><subject>antibacterial efficacy</subject><subject>Antibacterial properties</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacterial Physiological Phenomena - drug effects</subject><subject>biogenic silver nanoparticles</subject><subject>biological synthesis</subject><subject>biomedical materials</subject><subject>Cell Survival - drug effects</subject><subject>chemical synthesis</subject><subject>comparative antibacterial activity</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Compounding - methods</subject><subject>Drug Synergism</subject><subject>Effectiveness</subject><subject>Escherichia coli</subject><subject>Excipients - chemistry</subject><subject>face‐centred cubic structure</subject><subject>FCC plane</subject><subject>Fusarium oxysporum</subject><subject>materials preparation</subject><subject>Metal Nanoparticles - administration & dosage</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>nanofabrication</subject><subject>nanomedicine</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>pluronic F68</subject><subject>Poloxamer - chemical synthesis</subject><subject>Pseudomonas aeruginosa</subject><subject>scanning electron microscopy</subject><subject>silver</subject><subject>Silver - administration & dosage</subject><subject>Silver - chemistry</subject><subject>size 10 nm to 70 nm</subject><subject>size 5 nm to 40 nm</subject><subject>Spectra</subject><subject>spherical silver nanoparticles</subject><subject>stabilising agent</subject><subject>Staphylococcus aureus</subject><subject>synergism</subject><subject>transmission electron microscopy</subject><subject>ultraviolet spectra</subject><subject>UV‐visible spectra</subject><subject>visible spectra</subject><subject>wavelength 420 nm</subject><subject>X‐ray diffraction</subject><subject>X‐ray diffraction pattern</subject><issn>1751-8741</issn><issn>1751-875X</issn><issn>1751-875X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhiMEoqXwAFyQj3DIYsdx4nBAalfdUqmCyyJxsxzH2Z3KsRfb2SqPwRvjdMuqSCA4ecb-_n_G-rPsNcELgsvmPeiY2zYuCkzYAmPGnmSnpGYk5zX79vRYl-QkexHC7Uwwyp9nJ0VdVrRu8Gn2Y-mGnfQywl4jaSO0UkXtQRqUCthDnJDrUQCz1x5ZaV2iIyijAwqTjVsdIOgOtRNqwRm3ATVLbYfUVg_3jXdjTPQdxC3amdE7CwqtKo5kQBKFKFswEMBukNxoG19mz3ppgn71cJ5lX1eX6-Wn_ObL1fXy_CZXjHOclw1VCvdtwTDrCe2IrOqW8arRXV3xkpNWNrRmZSUL3et0X5VFU-Ou6SjlJSb0LPt48N2N7aA7lUZ7acTOwyD9JJwE8fuLha3YuL3gVV1RxpPB2wcD776POkQxQFDaGGm1G4MgnLKqaBgt_gMlDSlJ2jqh5IAq70Lwuj9uRLCYUxcpdZFSF3PqYs40ad48_spR8SvmBHw4AHdg9PRvR_H5Yl1crHDqZ_G7g3jGbt3obYpFXF-uZ-qRZtf1ic3_wP59858tTduF</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Santos, Carolina Alves dos</creator><creator>Seckler, Marcelo Martins</creator><creator>Ingle, Avinash P</creator><creator>Rai, Mahendra</creator><general>The Institution of Engineering and Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201608</creationdate><title>Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent</title><author>Santos, Carolina Alves dos ; Seckler, Marcelo Martins ; Ingle, Avinash P ; Rai, Mahendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5880-493cc0fb2505f13d1a67b5869ed768481ba937546a2efe869642970d9d3384013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anti-Bacterial Agents - administration & dosage</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>antibacterial activity</topic><topic>antibacterial efficacy</topic><topic>Antibacterial properties</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacterial Physiological Phenomena - drug effects</topic><topic>biogenic silver nanoparticles</topic><topic>biological synthesis</topic><topic>biomedical materials</topic><topic>Cell Survival - drug effects</topic><topic>chemical synthesis</topic><topic>comparative antibacterial activity</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Compounding - methods</topic><topic>Drug Synergism</topic><topic>Effectiveness</topic><topic>Escherichia coli</topic><topic>Excipients - chemistry</topic><topic>face‐centred cubic structure</topic><topic>FCC plane</topic><topic>Fusarium oxysporum</topic><topic>materials preparation</topic><topic>Metal Nanoparticles - administration & dosage</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>nanofabrication</topic><topic>nanomedicine</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>pluronic F68</topic><topic>Poloxamer - chemical synthesis</topic><topic>Pseudomonas aeruginosa</topic><topic>scanning electron microscopy</topic><topic>silver</topic><topic>Silver - administration & dosage</topic><topic>Silver - chemistry</topic><topic>size 10 nm to 70 nm</topic><topic>size 5 nm to 40 nm</topic><topic>Spectra</topic><topic>spherical silver nanoparticles</topic><topic>stabilising agent</topic><topic>Staphylococcus aureus</topic><topic>synergism</topic><topic>transmission electron microscopy</topic><topic>ultraviolet spectra</topic><topic>UV‐visible spectra</topic><topic>visible spectra</topic><topic>wavelength 420 nm</topic><topic>X‐ray diffraction</topic><topic>X‐ray diffraction pattern</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Carolina Alves dos</creatorcontrib><creatorcontrib>Seckler, Marcelo Martins</creatorcontrib><creatorcontrib>Ingle, Avinash P</creatorcontrib><creatorcontrib>Rai, Mahendra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IET nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santos, Carolina Alves dos</au><au>Seckler, Marcelo Martins</au><au>Ingle, Avinash P</au><au>Rai, Mahendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent</atitle><jtitle>IET nanobiotechnology</jtitle><addtitle>IET Nanobiotechnol</addtitle><date>2016-08</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>200</spage><epage>205</epage><pages>200-205</pages><issn>1751-8741</issn><issn>1751-875X</issn><eissn>1751-875X</eissn><abstract>The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV–visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X-ray diffraction pattern confirmed the presence of face-centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5–40 and 10–70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential.</abstract><cop>England</cop><pub>The Institution of Engineering and Technology</pub><pmid>27463790</pmid><doi>10.1049/iet-nbt.2015.0055</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8741 |
ispartof | IET nanobiotechnology, 2016-08, Vol.10 (4), p.200-205 |
issn | 1751-8741 1751-875X 1751-875X |
language | eng |
recordid | cdi_pubmed_primary_27463790 |
source | Wiley Online Library (Open Access Collection) |
subjects | Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - chemical synthesis antibacterial activity antibacterial efficacy Antibacterial properties Antiinfectives and antibacterials Bacterial Physiological Phenomena - drug effects biogenic silver nanoparticles biological synthesis biomedical materials Cell Survival - drug effects chemical synthesis comparative antibacterial activity Dose-Response Relationship, Drug Drug Compounding - methods Drug Synergism Effectiveness Escherichia coli Excipients - chemistry face‐centred cubic structure FCC plane Fusarium oxysporum materials preparation Metal Nanoparticles - administration & dosage Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure nanofabrication nanomedicine Nanoparticles Particle Size pluronic F68 Poloxamer - chemical synthesis Pseudomonas aeruginosa scanning electron microscopy silver Silver - administration & dosage Silver - chemistry size 10 nm to 70 nm size 5 nm to 40 nm Spectra spherical silver nanoparticles stabilising agent Staphylococcus aureus synergism transmission electron microscopy ultraviolet spectra UV‐visible spectra visible spectra wavelength 420 nm X‐ray diffraction X‐ray diffraction pattern |
title | Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20antibacterial%20activity%20of%20silver%20nanoparticles%20synthesised%20by%20biological%20and%20chemical%20routes%20with%20pluronic%20F68%20as%20a%20stabilising%20agent&rft.jtitle=IET%20nanobiotechnology&rft.au=Santos,%20Carolina%20Alves%20dos&rft.date=2016-08&rft.volume=10&rft.issue=4&rft.spage=200&rft.epage=205&rft.pages=200-205&rft.issn=1751-8741&rft.eissn=1751-875X&rft_id=info:doi/10.1049/iet-nbt.2015.0055&rft_dat=%3Cproquest_24P%3E1819141481%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819141481&rft_id=info:pmid/27463790&rfr_iscdi=true |