Benchmark fragment-based H, C, N and O chemical shift predictions in molecular crystals
The performance of fragment-based ab initio 1 H, 13 C, 15 N and 17 O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we ex...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-08, Vol.18 (31), p.21686-2179 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2179 |
---|---|
container_issue | 31 |
container_start_page | 21686 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 18 |
creator | Hartman, Joshua D Kudla, Ryan A Day, Graeme M Mueller, Leonard J Beran, Gregory J. O |
description | The performance of fragment-based
ab initio
1
H,
13
C,
15
N and
17
O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts.
1
H,
13
C,
15
N, and
17
O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same
1
H,
13
C,
15
N, and
17
O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-
tert
-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl
2
(CH
3
)
2
(NODMA)
2
.
The performance of fragment-based
ab initio
1
H,
13
C,
15
N and
17
O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. |
doi_str_mv | 10.1039/c6cp01831a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27431490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1809604286</sourcerecordid><originalsourceid>FETCH-LOGICAL-p148t-1806a46f25d1f51a34065d7768df53fa77a85b1fc629fd763b10938a7b1212873</originalsourceid><addsrcrecordid>eNpFkL1PwzAUxC0EoqWwsIM8MjTgFzu2M0IFFKmiC4gxcvxBDfnCTob-90RqKdOd9H660zuELoHcAqH5nea6IyApqCM0BcZpkhPJjg9e8Ak6i_GLEAIZ0FM0SQWjwHIyRR8PttGbWoVv7IL6rG3TJ6WK1uDlHC_m-BWrxuA11htbe60qHDfe9bgL1njd-7aJ2De4biurh0oFrMM29qqK5-jEjWIv9jpD70-Pb4tlslo_vyzuV0kHTPYJSMIV4y7NDLgMFGWEZ0YILo3LqFNCKJmV4DRPc2cEpyWQnEolSkghlYLO0M0utwvtz2BjX9Q-altVqrHtEIuxIOeEpZKP6PUeHcramqILfvx7W_yNMQJXOyBEfbj-j0t_AQfoaFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809604286</pqid></control><display><type>article</type><title>Benchmark fragment-based H, C, N and O chemical shift predictions in molecular crystals</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hartman, Joshua D ; Kudla, Ryan A ; Day, Graeme M ; Mueller, Leonard J ; Beran, Gregory J. O</creator><creatorcontrib>Hartman, Joshua D ; Kudla, Ryan A ; Day, Graeme M ; Mueller, Leonard J ; Beran, Gregory J. O</creatorcontrib><description>The performance of fragment-based
ab initio
1
H,
13
C,
15
N and
17
O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts.
1
H,
13
C,
15
N, and
17
O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same
1
H,
13
C,
15
N, and
17
O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-
tert
-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl
2
(CH
3
)
2
(NODMA)
2
.
The performance of fragment-based
ab initio
1
H,
13
C,
15
N and
17
O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp01831a</identifier><identifier>PMID: 27431490</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2016-08, Vol.18 (31), p.21686-2179</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27431490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartman, Joshua D</creatorcontrib><creatorcontrib>Kudla, Ryan A</creatorcontrib><creatorcontrib>Day, Graeme M</creatorcontrib><creatorcontrib>Mueller, Leonard J</creatorcontrib><creatorcontrib>Beran, Gregory J. O</creatorcontrib><title>Benchmark fragment-based H, C, N and O chemical shift predictions in molecular crystals</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The performance of fragment-based
ab initio
1
H,
13
C,
15
N and
17
O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts.
1
H,
13
C,
15
N, and
17
O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same
1
H,
13
C,
15
N, and
17
O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-
tert
-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl
2
(CH
3
)
2
(NODMA)
2
.
The performance of fragment-based
ab initio
1
H,
13
C,
15
N and
17
O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkL1PwzAUxC0EoqWwsIM8MjTgFzu2M0IFFKmiC4gxcvxBDfnCTob-90RqKdOd9H660zuELoHcAqH5nea6IyApqCM0BcZpkhPJjg9e8Ak6i_GLEAIZ0FM0SQWjwHIyRR8PttGbWoVv7IL6rG3TJ6WK1uDlHC_m-BWrxuA11htbe60qHDfe9bgL1njd-7aJ2De4biurh0oFrMM29qqK5-jEjWIv9jpD70-Pb4tlslo_vyzuV0kHTPYJSMIV4y7NDLgMFGWEZ0YILo3LqFNCKJmV4DRPc2cEpyWQnEolSkghlYLO0M0utwvtz2BjX9Q-altVqrHtEIuxIOeEpZKP6PUeHcramqILfvx7W_yNMQJXOyBEfbj-j0t_AQfoaFo</recordid><startdate>20160821</startdate><enddate>20160821</enddate><creator>Hartman, Joshua D</creator><creator>Kudla, Ryan A</creator><creator>Day, Graeme M</creator><creator>Mueller, Leonard J</creator><creator>Beran, Gregory J. O</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160821</creationdate><title>Benchmark fragment-based H, C, N and O chemical shift predictions in molecular crystals</title><author>Hartman, Joshua D ; Kudla, Ryan A ; Day, Graeme M ; Mueller, Leonard J ; Beran, Gregory J. O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p148t-1806a46f25d1f51a34065d7768df53fa77a85b1fc629fd763b10938a7b1212873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartman, Joshua D</creatorcontrib><creatorcontrib>Kudla, Ryan A</creatorcontrib><creatorcontrib>Day, Graeme M</creatorcontrib><creatorcontrib>Mueller, Leonard J</creatorcontrib><creatorcontrib>Beran, Gregory J. O</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartman, Joshua D</au><au>Kudla, Ryan A</au><au>Day, Graeme M</au><au>Mueller, Leonard J</au><au>Beran, Gregory J. O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark fragment-based H, C, N and O chemical shift predictions in molecular crystals</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-08-21</date><risdate>2016</risdate><volume>18</volume><issue>31</issue><spage>21686</spage><epage>2179</epage><pages>21686-2179</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The performance of fragment-based
ab initio
1
H,
13
C,
15
N and
17
O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts.
1
H,
13
C,
15
N, and
17
O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same
1
H,
13
C,
15
N, and
17
O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-
tert
-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl
2
(CH
3
)
2
(NODMA)
2
.
The performance of fragment-based
ab initio
1
H,
13
C,
15
N and
17
O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals.</abstract><cop>England</cop><pmid>27431490</pmid><doi>10.1039/c6cp01831a</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2016-08, Vol.18 (31), p.21686-2179 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_27431490 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Benchmark fragment-based H, C, N and O chemical shift predictions in molecular crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20fragment-based%20H,%20C,%20N%20and%20O%20chemical%20shift%20predictions%20in%20molecular%20crystals&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Hartman,%20Joshua%20D&rft.date=2016-08-21&rft.volume=18&rft.issue=31&rft.spage=21686&rft.epage=2179&rft.pages=21686-2179&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp01831a&rft_dat=%3Cproquest_pubme%3E1809604286%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809604286&rft_id=info:pmid/27431490&rfr_iscdi=true |