On the Use of Knitted Antennas and Inductively Coupled RFID Tags for Wearable Applications

Recent advancements in conductive yarns and fabrication technologies offer exciting opportunities to design and knit seamless garments equipped with sensors for biomedical applications. In this paper, we discuss the design and application of a wearable strain sensor, which can be used for biomedical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2016-12, Vol.10 (6), p.1047-1057
Hauptverfasser: Patron, Damiano, Mongan, William, Kurzweg, Timothy P., Fontecchio, Adam, Dion, Genevieve, Anday, Endla K., Dandekar, Kapil R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1057
container_issue 6
container_start_page 1047
container_title IEEE transactions on biomedical circuits and systems
container_volume 10
creator Patron, Damiano
Mongan, William
Kurzweg, Timothy P.
Fontecchio, Adam
Dion, Genevieve
Anday, Endla K.
Dandekar, Kapil R.
description Recent advancements in conductive yarns and fabrication technologies offer exciting opportunities to design and knit seamless garments equipped with sensors for biomedical applications. In this paper, we discuss the design and application of a wearable strain sensor, which can be used for biomedical monitoring such as contraction, respiration, or limb movements. The system takes advantage of the intensity variations of the backscattered power (RSSI) from an inductively-coupled RFID tag under physical stretching. First, we describe the antenna design along with the modeling of the sheet impedance, which characterizes the conductive textile. Experimental results with custom fabricated prototypes showed good agreement with the numerical simulation of input impedance and radiation pattern. Finally, the wearable sensor has been applied for infant breathing monitoring using a medical programmable mannequin. A machine learning technique has been developed and applied to post-process the RSSI data, and the results show that breathing and non-breathing patterns can be successfully classified.
doi_str_mv 10.1109/TBCAS.2016.2518871
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_27411227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7458913</ieee_id><sourcerecordid>1826720273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-191f8e4fd98a07b2a60c482cf86450888225c88ee39965fae68794e49253644b3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdR_Kj-AQVZ8OIldXeyu9k91mi1KBS0RfAStslEI-kmZhOh_97UVg-eZmCed2Z4CDnlbMg5M1ez63j0PATG1RAk1zriO-SQG8ECYwzbXfchBEIKeUCOvP9gTCowsE8OIBKcA0SH5HXqaPuOdO6RVjl9cEXbYkZHrkXnrKfWZXTisi5tiy8sVzSuurrsgafx5IbO7JunedXQF7SNXZRIR3VdFqlti8r5Y7KX29LjybYOyHx8O4vvg8fp3SQePQapULwNuOG5RpFnRlsWLcAqlgoNaa6VkExrDSBTrRFDY5TMLSodGYHCgAyVEItwQC43e-um-uzQt8my8CmWpXVYdT7hGlQEDKKwRy_-oR9V17j-u56SKuyvGdVTsKHSpvK-wTypm2Jpm1XCWbI2n_yYT9bmk635PnS-Xd0tlpj9RX5V98DZBigQ8W8cCakND8NvJwuEwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856388896</pqid></control><display><type>article</type><title>On the Use of Knitted Antennas and Inductively Coupled RFID Tags for Wearable Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Patron, Damiano ; Mongan, William ; Kurzweg, Timothy P. ; Fontecchio, Adam ; Dion, Genevieve ; Anday, Endla K. ; Dandekar, Kapil R.</creator><creatorcontrib>Patron, Damiano ; Mongan, William ; Kurzweg, Timothy P. ; Fontecchio, Adam ; Dion, Genevieve ; Anday, Endla K. ; Dandekar, Kapil R.</creatorcontrib><description>Recent advancements in conductive yarns and fabrication technologies offer exciting opportunities to design and knit seamless garments equipped with sensors for biomedical applications. In this paper, we discuss the design and application of a wearable strain sensor, which can be used for biomedical monitoring such as contraction, respiration, or limb movements. The system takes advantage of the intensity variations of the backscattered power (RSSI) from an inductively-coupled RFID tag under physical stretching. First, we describe the antenna design along with the modeling of the sheet impedance, which characterizes the conductive textile. Experimental results with custom fabricated prototypes showed good agreement with the numerical simulation of input impedance and radiation pattern. Finally, the wearable sensor has been applied for infant breathing monitoring using a medical programmable mannequin. A machine learning technique has been developed and applied to post-process the RSSI data, and the results show that breathing and non-breathing patterns can be successfully classified.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2016.2518871</identifier><identifier>PMID: 27411227</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Antenna design ; Antenna radiation patterns ; Antennas ; Biomedical communication ; Biomedical materials ; Biomedical monitoring ; Breathing ; Contraction ; Data processing ; Design ; Equipment Design ; Fabrication ; Humans ; Impedance ; Input impedance ; Learning algorithms ; Machine learning ; Mannequins ; Mathematical models ; Monitoring ; Monitoring, Physiologic - instrumentation ; Monitoring, Physiologic - methods ; Movement - physiology ; Prototypes ; Radiation ; Radio frequency identification ; Radio Frequency Identification Device ; Radio-tagging ; Radiofrequency identification ; Respiration ; RFID tags ; Simulation ; Textile technology ; Wearable sensors ; Wearable technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2016-12, Vol.10 (6), p.1047-1057</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-191f8e4fd98a07b2a60c482cf86450888225c88ee39965fae68794e49253644b3</citedby><cites>FETCH-LOGICAL-c461t-191f8e4fd98a07b2a60c482cf86450888225c88ee39965fae68794e49253644b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7458913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7458913$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27411227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patron, Damiano</creatorcontrib><creatorcontrib>Mongan, William</creatorcontrib><creatorcontrib>Kurzweg, Timothy P.</creatorcontrib><creatorcontrib>Fontecchio, Adam</creatorcontrib><creatorcontrib>Dion, Genevieve</creatorcontrib><creatorcontrib>Anday, Endla K.</creatorcontrib><creatorcontrib>Dandekar, Kapil R.</creatorcontrib><title>On the Use of Knitted Antennas and Inductively Coupled RFID Tags for Wearable Applications</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Recent advancements in conductive yarns and fabrication technologies offer exciting opportunities to design and knit seamless garments equipped with sensors for biomedical applications. In this paper, we discuss the design and application of a wearable strain sensor, which can be used for biomedical monitoring such as contraction, respiration, or limb movements. The system takes advantage of the intensity variations of the backscattered power (RSSI) from an inductively-coupled RFID tag under physical stretching. First, we describe the antenna design along with the modeling of the sheet impedance, which characterizes the conductive textile. Experimental results with custom fabricated prototypes showed good agreement with the numerical simulation of input impedance and radiation pattern. Finally, the wearable sensor has been applied for infant breathing monitoring using a medical programmable mannequin. A machine learning technique has been developed and applied to post-process the RSSI data, and the results show that breathing and non-breathing patterns can be successfully classified.</description><subject>Antenna design</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Biomedical communication</subject><subject>Biomedical materials</subject><subject>Biomedical monitoring</subject><subject>Breathing</subject><subject>Contraction</subject><subject>Data processing</subject><subject>Design</subject><subject>Equipment Design</subject><subject>Fabrication</subject><subject>Humans</subject><subject>Impedance</subject><subject>Input impedance</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mannequins</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Monitoring, Physiologic - instrumentation</subject><subject>Monitoring, Physiologic - methods</subject><subject>Movement - physiology</subject><subject>Prototypes</subject><subject>Radiation</subject><subject>Radio frequency identification</subject><subject>Radio Frequency Identification Device</subject><subject>Radio-tagging</subject><subject>Radiofrequency identification</subject><subject>Respiration</subject><subject>RFID tags</subject><subject>Simulation</subject><subject>Textile technology</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdR_Kj-AQVZ8OIldXeyu9k91mi1KBS0RfAStslEI-kmZhOh_97UVg-eZmCed2Z4CDnlbMg5M1ez63j0PATG1RAk1zriO-SQG8ECYwzbXfchBEIKeUCOvP9gTCowsE8OIBKcA0SH5HXqaPuOdO6RVjl9cEXbYkZHrkXnrKfWZXTisi5tiy8sVzSuurrsgafx5IbO7JunedXQF7SNXZRIR3VdFqlti8r5Y7KX29LjybYOyHx8O4vvg8fp3SQePQapULwNuOG5RpFnRlsWLcAqlgoNaa6VkExrDSBTrRFDY5TMLSodGYHCgAyVEItwQC43e-um-uzQt8my8CmWpXVYdT7hGlQEDKKwRy_-oR9V17j-u56SKuyvGdVTsKHSpvK-wTypm2Jpm1XCWbI2n_yYT9bmk635PnS-Xd0tlpj9RX5V98DZBigQ8W8cCakND8NvJwuEwA</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Patron, Damiano</creator><creator>Mongan, William</creator><creator>Kurzweg, Timothy P.</creator><creator>Fontecchio, Adam</creator><creator>Dion, Genevieve</creator><creator>Anday, Endla K.</creator><creator>Dandekar, Kapil R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201612</creationdate><title>On the Use of Knitted Antennas and Inductively Coupled RFID Tags for Wearable Applications</title><author>Patron, Damiano ; Mongan, William ; Kurzweg, Timothy P. ; Fontecchio, Adam ; Dion, Genevieve ; Anday, Endla K. ; Dandekar, Kapil R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-191f8e4fd98a07b2a60c482cf86450888225c88ee39965fae68794e49253644b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antenna design</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Biomedical communication</topic><topic>Biomedical materials</topic><topic>Biomedical monitoring</topic><topic>Breathing</topic><topic>Contraction</topic><topic>Data processing</topic><topic>Design</topic><topic>Equipment Design</topic><topic>Fabrication</topic><topic>Humans</topic><topic>Impedance</topic><topic>Input impedance</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mannequins</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Monitoring, Physiologic - instrumentation</topic><topic>Monitoring, Physiologic - methods</topic><topic>Movement - physiology</topic><topic>Prototypes</topic><topic>Radiation</topic><topic>Radio frequency identification</topic><topic>Radio Frequency Identification Device</topic><topic>Radio-tagging</topic><topic>Radiofrequency identification</topic><topic>Respiration</topic><topic>RFID tags</topic><topic>Simulation</topic><topic>Textile technology</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patron, Damiano</creatorcontrib><creatorcontrib>Mongan, William</creatorcontrib><creatorcontrib>Kurzweg, Timothy P.</creatorcontrib><creatorcontrib>Fontecchio, Adam</creatorcontrib><creatorcontrib>Dion, Genevieve</creatorcontrib><creatorcontrib>Anday, Endla K.</creatorcontrib><creatorcontrib>Dandekar, Kapil R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patron, Damiano</au><au>Mongan, William</au><au>Kurzweg, Timothy P.</au><au>Fontecchio, Adam</au><au>Dion, Genevieve</au><au>Anday, Endla K.</au><au>Dandekar, Kapil R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Knitted Antennas and Inductively Coupled RFID Tags for Wearable Applications</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2016-12</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>1047</spage><epage>1057</epage><pages>1047-1057</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Recent advancements in conductive yarns and fabrication technologies offer exciting opportunities to design and knit seamless garments equipped with sensors for biomedical applications. In this paper, we discuss the design and application of a wearable strain sensor, which can be used for biomedical monitoring such as contraction, respiration, or limb movements. The system takes advantage of the intensity variations of the backscattered power (RSSI) from an inductively-coupled RFID tag under physical stretching. First, we describe the antenna design along with the modeling of the sheet impedance, which characterizes the conductive textile. Experimental results with custom fabricated prototypes showed good agreement with the numerical simulation of input impedance and radiation pattern. Finally, the wearable sensor has been applied for infant breathing monitoring using a medical programmable mannequin. A machine learning technique has been developed and applied to post-process the RSSI data, and the results show that breathing and non-breathing patterns can be successfully classified.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27411227</pmid><doi>10.1109/TBCAS.2016.2518871</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2016-12, Vol.10 (6), p.1047-1057
issn 1932-4545
1940-9990
language eng
recordid cdi_pubmed_primary_27411227
source IEEE Electronic Library (IEL)
subjects Antenna design
Antenna radiation patterns
Antennas
Biomedical communication
Biomedical materials
Biomedical monitoring
Breathing
Contraction
Data processing
Design
Equipment Design
Fabrication
Humans
Impedance
Input impedance
Learning algorithms
Machine learning
Mannequins
Mathematical models
Monitoring
Monitoring, Physiologic - instrumentation
Monitoring, Physiologic - methods
Movement - physiology
Prototypes
Radiation
Radio frequency identification
Radio Frequency Identification Device
Radio-tagging
Radiofrequency identification
Respiration
RFID tags
Simulation
Textile technology
Wearable sensors
Wearable technology
title On the Use of Knitted Antennas and Inductively Coupled RFID Tags for Wearable Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Knitted%20Antennas%20and%20Inductively%20Coupled%20RFID%20Tags%20for%20Wearable%20Applications&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Patron,%20Damiano&rft.date=2016-12&rft.volume=10&rft.issue=6&rft.spage=1047&rft.epage=1057&rft.pages=1047-1057&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2016.2518871&rft_dat=%3Cproquest_RIE%3E1826720273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856388896&rft_id=info:pmid/27411227&rft_ieee_id=7458913&rfr_iscdi=true