HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented appro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2017-07, Vol.39 (7), p.1346-1359 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1359 |
---|---|
container_issue | 7 |
container_start_page | 1346 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 39 |
creator | Lagorce, Xavier Orchard, Garrick Galluppi, Francesco Shi, Bertram E. Benosman, Ryad B. |
description | This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy. |
doi_str_mv | 10.1109/TPAMI.2016.2574707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27411216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7508476</ieee_id><sourcerecordid>1826717112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e64bd0f19dc8dbe72cb7f342f5fca3839f2c89aeba26ce8957b9305e396df3d23</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhjdGI4j-AU1MEy9eivvRdne9IQEhwUCknjfb7ayWQKu7rQn_3iLIwdMc5nnfzDwIXRPcJwTLh3QxeJn2KSZJn8Y84pifoC6RTIYsZvIUddsNDYWgooMuvF9hTKIYs3PUoTwihJKki8aTebp8DAbBpACnnfnYBpUNRt9Q1uGT9pAHabGBcNk4qw34wFYuWOi6BlcGr2Cq97Koi6q8RGdWrz1cHWYPvY1H6XASzubP0-FgFpoI4zqEJMpybInMjcgz4NRk3LKI2tgazQSTlhohNWSaJgaEjHkmGY6BySS3LKesh-73vZ-u-mrA12pTeAPrtS6harwigiac8Pa5Fr37h66qxpXtdYpIHHOCaRK1FN1TxlXeO7Dq0xUb7baKYLWzrH4tq51ldbDchm4P1U22gfwY-dPaAjd7oACA45rHWEQ8YT-fVX8n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905710264</pqid></control><display><type>article</type><title>HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition</title><source>IEEE</source><creator>Lagorce, Xavier ; Orchard, Garrick ; Galluppi, Francesco ; Shi, Bertram E. ; Benosman, Ryad B.</creator><creatorcontrib>Lagorce, Xavier ; Orchard, Garrick ; Galluppi, Francesco ; Shi, Bertram E. ; Benosman, Ryad B.</creatorcontrib><description>This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2574707</identifier><identifier>PMID: 27411216</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biosensors ; Cameras ; Character recognition ; Computer architecture ; event-based vision ; Face recognition ; Feature extraction ; Feature recognition ; Information dissemination ; Mathematical models ; Neuromorphic sensing ; Object recognition ; Pattern recognition ; Pixels ; Sensors ; Surface chemistry ; Vision ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2017-07, Vol.39 (7), p.1346-1359</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e64bd0f19dc8dbe72cb7f342f5fca3839f2c89aeba26ce8957b9305e396df3d23</citedby><cites>FETCH-LOGICAL-c400t-e64bd0f19dc8dbe72cb7f342f5fca3839f2c89aeba26ce8957b9305e396df3d23</cites><orcidid>0000-0003-0243-944X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7508476$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27411216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lagorce, Xavier</creatorcontrib><creatorcontrib>Orchard, Garrick</creatorcontrib><creatorcontrib>Galluppi, Francesco</creatorcontrib><creatorcontrib>Shi, Bertram E.</creatorcontrib><creatorcontrib>Benosman, Ryad B.</creatorcontrib><title>HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.</description><subject>Biosensors</subject><subject>Cameras</subject><subject>Character recognition</subject><subject>Computer architecture</subject><subject>event-based vision</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Information dissemination</subject><subject>Mathematical models</subject><subject>Neuromorphic sensing</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Pixels</subject><subject>Sensors</subject><subject>Surface chemistry</subject><subject>Vision</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1PwkAQhjdGI4j-AU1MEy9eivvRdne9IQEhwUCknjfb7ayWQKu7rQn_3iLIwdMc5nnfzDwIXRPcJwTLh3QxeJn2KSZJn8Y84pifoC6RTIYsZvIUddsNDYWgooMuvF9hTKIYs3PUoTwihJKki8aTebp8DAbBpACnnfnYBpUNRt9Q1uGT9pAHabGBcNk4qw34wFYuWOi6BlcGr2Cq97Koi6q8RGdWrz1cHWYPvY1H6XASzubP0-FgFpoI4zqEJMpybInMjcgz4NRk3LKI2tgazQSTlhohNWSaJgaEjHkmGY6BySS3LKesh-73vZ-u-mrA12pTeAPrtS6harwigiac8Pa5Fr37h66qxpXtdYpIHHOCaRK1FN1TxlXeO7Dq0xUb7baKYLWzrH4tq51ldbDchm4P1U22gfwY-dPaAjd7oACA45rHWEQ8YT-fVX8n</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Lagorce, Xavier</creator><creator>Orchard, Garrick</creator><creator>Galluppi, Francesco</creator><creator>Shi, Bertram E.</creator><creator>Benosman, Ryad B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0243-944X</orcidid></search><sort><creationdate>20170701</creationdate><title>HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition</title><author>Lagorce, Xavier ; Orchard, Garrick ; Galluppi, Francesco ; Shi, Bertram E. ; Benosman, Ryad B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e64bd0f19dc8dbe72cb7f342f5fca3839f2c89aeba26ce8957b9305e396df3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biosensors</topic><topic>Cameras</topic><topic>Character recognition</topic><topic>Computer architecture</topic><topic>event-based vision</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Information dissemination</topic><topic>Mathematical models</topic><topic>Neuromorphic sensing</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Pixels</topic><topic>Sensors</topic><topic>Surface chemistry</topic><topic>Vision</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagorce, Xavier</creatorcontrib><creatorcontrib>Orchard, Garrick</creatorcontrib><creatorcontrib>Galluppi, Francesco</creatorcontrib><creatorcontrib>Shi, Bertram E.</creatorcontrib><creatorcontrib>Benosman, Ryad B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagorce, Xavier</au><au>Orchard, Garrick</au><au>Galluppi, Francesco</au><au>Shi, Bertram E.</au><au>Benosman, Ryad B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>39</volume><issue>7</issue><spage>1346</spage><epage>1359</epage><pages>1346-1359</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27411216</pmid><doi>10.1109/TPAMI.2016.2574707</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0243-944X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2017-07, Vol.39 (7), p.1346-1359 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_27411216 |
source | IEEE |
subjects | Biosensors Cameras Character recognition Computer architecture event-based vision Face recognition Feature extraction Feature recognition Information dissemination Mathematical models Neuromorphic sensing Object recognition Pattern recognition Pixels Sensors Surface chemistry Vision Visualization |
title | HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HOTS:%20A%20Hierarchy%20of%20Event-Based%20Time-Surfaces%20for%20Pattern%20Recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lagorce,%20Xavier&rft.date=2017-07-01&rft.volume=39&rft.issue=7&rft.spage=1346&rft.epage=1359&rft.pages=1346-1359&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2574707&rft_dat=%3Cproquest_pubme%3E1826717112%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905710264&rft_id=info:pmid/27411216&rft_ieee_id=7508476&rfr_iscdi=true |