Lattice continuum and diffusional creep

Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-04, Vol.472 (2188), p.20160039-20160039
1. Verfasser: Mesarovic, Sinisa Dj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20160039
container_issue 2188
container_start_page 20160039
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 472
creator Mesarovic, Sinisa Dj
description Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
doi_str_mv 10.1098/rspa.2016.0039
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27274696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826693087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-1a88e797ff11a470889b32eca3b576e7f5e93fb3dba3d42e4f28d49c0e07a7053</originalsourceid><addsrcrecordid>eNp9kEtrFTEUgIMo9uXWpdydbuZ68pg8NkIptgoXWtSuQyZzoqlzJ2MyU7j99Z3rbUsr2FUC-c53wkfIWwpLCkZ_zGVwSwZULgG4eUH2qVC0YkbIl_OdS1HVwOgeOSjlCgBMrdVrsscUU0IauU_er9w4Ro8Ln_ox9tO0Xri-XbQxhKnE1Ltu4TPicEReBdcVfHN3HpLL088_Tr5Uq_OzryfHq8rXXIwVdVqjMioESp1QoLVpOEPveFMriSrUaHhoeNs43gqGIjDdCuMBQTkFNT8kn3beYWrW2Hrsx-w6O-S4dnljk4v26Usff9mf6doKbRjTYhZ8uBPk9GfCMtp1LB67zvWYpmKpZlIaDlrN6HKH-pxKyRge1lCw27p2W9du69pt3Xng3ePPPeD3OWeA74CcNnOl5COOG3uVpjyHLP_X_n5u6tv3i-NroVhkVGsLmlOQrObU3sRhp5ofbSxlQvsXear_d9stBJ-q0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826693087</pqid></control><display><type>article</type><title>Lattice continuum and diffusional creep</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Mesarovic, Sinisa Dj</creator><creatorcontrib>Mesarovic, Sinisa Dj</creatorcontrib><description>Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2016.0039</identifier><identifier>PMID: 27274696</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Continuum Kinematics ; Lattice Growth ; Moving Boundaries ; Vacancy Diffusion ; Vacancy Source</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-04, Vol.472 (2188), p.20160039-20160039</ispartof><rights>2016 The Author(s)</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-1a88e797ff11a470889b32eca3b576e7f5e93fb3dba3d42e4f28d49c0e07a7053</citedby><cites>FETCH-LOGICAL-c534t-1a88e797ff11a470889b32eca3b576e7f5e93fb3dba3d42e4f28d49c0e07a7053</cites><orcidid>0000-0002-0117-426X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27274696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mesarovic, Sinisa Dj</creatorcontrib><title>Lattice continuum and diffusional creep</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.</description><subject>Continuum Kinematics</subject><subject>Lattice Growth</subject><subject>Moving Boundaries</subject><subject>Vacancy Diffusion</subject><subject>Vacancy Source</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrFTEUgIMo9uXWpdydbuZ68pg8NkIptgoXWtSuQyZzoqlzJ2MyU7j99Z3rbUsr2FUC-c53wkfIWwpLCkZ_zGVwSwZULgG4eUH2qVC0YkbIl_OdS1HVwOgeOSjlCgBMrdVrsscUU0IauU_er9w4Ro8Ln_ox9tO0Xri-XbQxhKnE1Ltu4TPicEReBdcVfHN3HpLL088_Tr5Uq_OzryfHq8rXXIwVdVqjMioESp1QoLVpOEPveFMriSrUaHhoeNs43gqGIjDdCuMBQTkFNT8kn3beYWrW2Hrsx-w6O-S4dnljk4v26Usff9mf6doKbRjTYhZ8uBPk9GfCMtp1LB67zvWYpmKpZlIaDlrN6HKH-pxKyRge1lCw27p2W9du69pt3Xng3ePPPeD3OWeA74CcNnOl5COOG3uVpjyHLP_X_n5u6tv3i-NroVhkVGsLmlOQrObU3sRhp5ofbSxlQvsXear_d9stBJ-q0g</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Mesarovic, Sinisa Dj</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0117-426X</orcidid></search><sort><creationdate>20160401</creationdate><title>Lattice continuum and diffusional creep</title><author>Mesarovic, Sinisa Dj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-1a88e797ff11a470889b32eca3b576e7f5e93fb3dba3d42e4f28d49c0e07a7053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Continuum Kinematics</topic><topic>Lattice Growth</topic><topic>Moving Boundaries</topic><topic>Vacancy Diffusion</topic><topic>Vacancy Source</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesarovic, Sinisa Dj</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesarovic, Sinisa Dj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice continuum and diffusional creep</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>472</volume><issue>2188</issue><spage>20160039</spage><epage>20160039</epage><pages>20160039-20160039</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>27274696</pmid><doi>10.1098/rspa.2016.0039</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0117-426X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-04, Vol.472 (2188), p.20160039-20160039
issn 1364-5021
1471-2946
language eng
recordid cdi_pubmed_primary_27274696
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; JSTOR
subjects Continuum Kinematics
Lattice Growth
Moving Boundaries
Vacancy Diffusion
Vacancy Source
title Lattice continuum and diffusional creep
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20continuum%20and%20diffusional%20creep&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Mesarovic,%20Sinisa%20Dj&rft.date=2016-04-01&rft.volume=472&rft.issue=2188&rft.spage=20160039&rft.epage=20160039&rft.pages=20160039-20160039&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2016.0039&rft_dat=%3Cproquest_pubme%3E1826693087%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826693087&rft_id=info:pmid/27274696&rfr_iscdi=true