Lattice continuum and diffusional creep
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in cr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-04, Vol.472 (2188), p.20160039-20160039 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20160039 |
---|---|
container_issue | 2188 |
container_start_page | 20160039 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 472 |
creator | Mesarovic, Sinisa Dj |
description | Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. |
doi_str_mv | 10.1098/rspa.2016.0039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27274696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826693087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-1a88e797ff11a470889b32eca3b576e7f5e93fb3dba3d42e4f28d49c0e07a7053</originalsourceid><addsrcrecordid>eNp9kEtrFTEUgIMo9uXWpdydbuZ68pg8NkIptgoXWtSuQyZzoqlzJ2MyU7j99Z3rbUsr2FUC-c53wkfIWwpLCkZ_zGVwSwZULgG4eUH2qVC0YkbIl_OdS1HVwOgeOSjlCgBMrdVrsscUU0IauU_er9w4Ro8Ln_ox9tO0Xri-XbQxhKnE1Ltu4TPicEReBdcVfHN3HpLL088_Tr5Uq_OzryfHq8rXXIwVdVqjMioESp1QoLVpOEPveFMriSrUaHhoeNs43gqGIjDdCuMBQTkFNT8kn3beYWrW2Hrsx-w6O-S4dnljk4v26Usff9mf6doKbRjTYhZ8uBPk9GfCMtp1LB67zvWYpmKpZlIaDlrN6HKH-pxKyRge1lCw27p2W9du69pt3Xng3ePPPeD3OWeA74CcNnOl5COOG3uVpjyHLP_X_n5u6tv3i-NroVhkVGsLmlOQrObU3sRhp5ofbSxlQvsXear_d9stBJ-q0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826693087</pqid></control><display><type>article</type><title>Lattice continuum and diffusional creep</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Mesarovic, Sinisa Dj</creator><creatorcontrib>Mesarovic, Sinisa Dj</creatorcontrib><description>Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2016.0039</identifier><identifier>PMID: 27274696</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Continuum Kinematics ; Lattice Growth ; Moving Boundaries ; Vacancy Diffusion ; Vacancy Source</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-04, Vol.472 (2188), p.20160039-20160039</ispartof><rights>2016 The Author(s)</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-1a88e797ff11a470889b32eca3b576e7f5e93fb3dba3d42e4f28d49c0e07a7053</citedby><cites>FETCH-LOGICAL-c534t-1a88e797ff11a470889b32eca3b576e7f5e93fb3dba3d42e4f28d49c0e07a7053</cites><orcidid>0000-0002-0117-426X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27274696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mesarovic, Sinisa Dj</creatorcontrib><title>Lattice continuum and diffusional creep</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.</description><subject>Continuum Kinematics</subject><subject>Lattice Growth</subject><subject>Moving Boundaries</subject><subject>Vacancy Diffusion</subject><subject>Vacancy Source</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrFTEUgIMo9uXWpdydbuZ68pg8NkIptgoXWtSuQyZzoqlzJ2MyU7j99Z3rbUsr2FUC-c53wkfIWwpLCkZ_zGVwSwZULgG4eUH2qVC0YkbIl_OdS1HVwOgeOSjlCgBMrdVrsscUU0IauU_er9w4Ro8Ln_ox9tO0Xri-XbQxhKnE1Ltu4TPicEReBdcVfHN3HpLL088_Tr5Uq_OzryfHq8rXXIwVdVqjMioESp1QoLVpOEPveFMriSrUaHhoeNs43gqGIjDdCuMBQTkFNT8kn3beYWrW2Hrsx-w6O-S4dnljk4v26Usff9mf6doKbRjTYhZ8uBPk9GfCMtp1LB67zvWYpmKpZlIaDlrN6HKH-pxKyRge1lCw27p2W9du69pt3Xng3ePPPeD3OWeA74CcNnOl5COOG3uVpjyHLP_X_n5u6tv3i-NroVhkVGsLmlOQrObU3sRhp5ofbSxlQvsXear_d9stBJ-q0g</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Mesarovic, Sinisa Dj</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0117-426X</orcidid></search><sort><creationdate>20160401</creationdate><title>Lattice continuum and diffusional creep</title><author>Mesarovic, Sinisa Dj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-1a88e797ff11a470889b32eca3b576e7f5e93fb3dba3d42e4f28d49c0e07a7053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Continuum Kinematics</topic><topic>Lattice Growth</topic><topic>Moving Boundaries</topic><topic>Vacancy Diffusion</topic><topic>Vacancy Source</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesarovic, Sinisa Dj</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesarovic, Sinisa Dj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice continuum and diffusional creep</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>472</volume><issue>2188</issue><spage>20160039</spage><epage>20160039</epage><pages>20160039-20160039</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>27274696</pmid><doi>10.1098/rspa.2016.0039</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0117-426X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-04, Vol.472 (2188), p.20160039-20160039 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_pubmed_primary_27274696 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; JSTOR |
subjects | Continuum Kinematics Lattice Growth Moving Boundaries Vacancy Diffusion Vacancy Source |
title | Lattice continuum and diffusional creep |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20continuum%20and%20diffusional%20creep&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Mesarovic,%20Sinisa%20Dj&rft.date=2016-04-01&rft.volume=472&rft.issue=2188&rft.spage=20160039&rft.epage=20160039&rft.pages=20160039-20160039&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2016.0039&rft_dat=%3Cproquest_pubme%3E1826693087%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826693087&rft_id=info:pmid/27274696&rfr_iscdi=true |