Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization

This paper introduces a 2D extension of the empirical mode decomposition (EMD), through a novel approach based on unconstrained optimization. EMD is a fully data-driven method that locally separates, in a completely data-driven and unsupervised manner, signals into fast and slow oscillations. The pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2016-05, Vol.25 (5), p.2288-2297
Hauptverfasser: Colominas, Marcelo A., Humeau-Heurtier, Anne, Schlotthauer, Gaston
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2297
container_issue 5
container_start_page 2288
container_title IEEE transactions on image processing
container_volume 25
creator Colominas, Marcelo A.
Humeau-Heurtier, Anne
Schlotthauer, Gaston
description This paper introduces a 2D extension of the empirical mode decomposition (EMD), through a novel approach based on unconstrained optimization. EMD is a fully data-driven method that locally separates, in a completely data-driven and unsupervised manner, signals into fast and slow oscillations. The present proposal implements the method in a very simple and fast way, and it is compared with the state-of-the-art methods evidencing the advantages of being computationally efficient, orientation-independent, and leads to better performances for the decomposition of amplitude modulated-frequency modulated (AM-FM) images. The resulting genuine 2D method is successfully tested on artificial AM-FM images and its capabilities are illustrated on a biomedical example. The proposed framework leaves room for an nD extension (n > 2 ).
doi_str_mv 10.1109/TIP.2016.2541959
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_26992022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7433433</ieee_id><sourcerecordid>4046710871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-a5acdfc35ce50ce02758a3817cf5ff4a8a2077a4b9a1a7559b626aed82c2207d3</originalsourceid><addsrcrecordid>eNqNkcGL1DAUh4so7rp6FwQpeNFDx7w0aZLj7rq6AyPjYfcc3qSvmqVtatIR9K83dcY5eBJCEt773o-EryheAlsBMPP-bv1lxRk0Ky4FGGkeFedgBFSMCf4435lUlQJhzopnKT0wBkJC87Q4440xnHF-Xrht9DTOOPswVuuxpYnyNs7lzTD56B325efQUvmBXBimkPwCll2I5XrAr5TKK0zUlrl2P7owpjmiH3NhO81-8L_-5D4vnnTYJ3pxPC-K-483d9e31Wb7aX19uamckM1coUTXdq6WjiRzxLiSGmsNynWy6wRq5EwpFDuDgEpKs2t4g9Rq7njutPVF8e6Q-w17O0U_YPxpA3p7e7mxS41BrbXm4gdk9u2BnWL4vqc028EnR32PI4V9sqC5lI02IP4DZYqrpjZL6pt_0Iewj2P-tAWlVXYGvMkUO1AuhpQidafHArOLV5u92sWrPXrNI6-PwfvdQO1p4K_IDLw6AJ6ITm0l6jqv-jc90aWv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787110126</pqid></control><display><type>article</type><title>Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Colominas, Marcelo A. ; Humeau-Heurtier, Anne ; Schlotthauer, Gaston</creator><creatorcontrib>Colominas, Marcelo A. ; Humeau-Heurtier, Anne ; Schlotthauer, Gaston</creatorcontrib><description>This paper introduces a 2D extension of the empirical mode decomposition (EMD), through a novel approach based on unconstrained optimization. EMD is a fully data-driven method that locally separates, in a completely data-driven and unsupervised manner, signals into fast and slow oscillations. The present proposal implements the method in a very simple and fast way, and it is compared with the state-of-the-art methods evidencing the advantages of being computationally efficient, orientation-independent, and leads to better performances for the decomposition of amplitude modulated-frequency modulated (AM-FM) images. The resulting genuine 2D method is successfully tested on artificial AM-FM images and its capabilities are illustrated on a biomedical example. The proposed framework leaves room for an nD extension (n &gt; 2 ).</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2016.2541959</identifier><identifier>PMID: 26992022</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computational efficiency ; data-driven ; Decomposition ; Empirical Mode Decomposition ; Engineering Sciences ; Frequency modulation ; Interpolation ; non-stationary image ; Optimization ; Oscillations ; Proposals ; Signal and Image processing ; Sparse matrices ; Splines (mathematics) ; State of the art ; Transaction processing ; Two dimensional ; unconstrained optimization</subject><ispartof>IEEE transactions on image processing, 2016-05, Vol.25 (5), p.2288-2297</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-a5acdfc35ce50ce02758a3817cf5ff4a8a2077a4b9a1a7559b626aed82c2207d3</citedby><cites>FETCH-LOGICAL-c456t-a5acdfc35ce50ce02758a3817cf5ff4a8a2077a4b9a1a7559b626aed82c2207d3</cites><orcidid>0000-0002-6289-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7433433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7433433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26992022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01388824$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Colominas, Marcelo A.</creatorcontrib><creatorcontrib>Humeau-Heurtier, Anne</creatorcontrib><creatorcontrib>Schlotthauer, Gaston</creatorcontrib><title>Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper introduces a 2D extension of the empirical mode decomposition (EMD), through a novel approach based on unconstrained optimization. EMD is a fully data-driven method that locally separates, in a completely data-driven and unsupervised manner, signals into fast and slow oscillations. The present proposal implements the method in a very simple and fast way, and it is compared with the state-of-the-art methods evidencing the advantages of being computationally efficient, orientation-independent, and leads to better performances for the decomposition of amplitude modulated-frequency modulated (AM-FM) images. The resulting genuine 2D method is successfully tested on artificial AM-FM images and its capabilities are illustrated on a biomedical example. The proposed framework leaves room for an nD extension (n &gt; 2 ).</description><subject>Computational efficiency</subject><subject>data-driven</subject><subject>Decomposition</subject><subject>Empirical Mode Decomposition</subject><subject>Engineering Sciences</subject><subject>Frequency modulation</subject><subject>Interpolation</subject><subject>non-stationary image</subject><subject>Optimization</subject><subject>Oscillations</subject><subject>Proposals</subject><subject>Signal and Image processing</subject><subject>Sparse matrices</subject><subject>Splines (mathematics)</subject><subject>State of the art</subject><subject>Transaction processing</subject><subject>Two dimensional</subject><subject>unconstrained optimization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkcGL1DAUh4so7rp6FwQpeNFDx7w0aZLj7rq6AyPjYfcc3qSvmqVtatIR9K83dcY5eBJCEt773o-EryheAlsBMPP-bv1lxRk0Ky4FGGkeFedgBFSMCf4435lUlQJhzopnKT0wBkJC87Q4440xnHF-Xrht9DTOOPswVuuxpYnyNs7lzTD56B325efQUvmBXBimkPwCll2I5XrAr5TKK0zUlrl2P7owpjmiH3NhO81-8L_-5D4vnnTYJ3pxPC-K-483d9e31Wb7aX19uamckM1coUTXdq6WjiRzxLiSGmsNynWy6wRq5EwpFDuDgEpKs2t4g9Rq7njutPVF8e6Q-w17O0U_YPxpA3p7e7mxS41BrbXm4gdk9u2BnWL4vqc028EnR32PI4V9sqC5lI02IP4DZYqrpjZL6pt_0Iewj2P-tAWlVXYGvMkUO1AuhpQidafHArOLV5u92sWrPXrNI6-PwfvdQO1p4K_IDLw6AJ6ITm0l6jqv-jc90aWv</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Colominas, Marcelo A.</creator><creator>Humeau-Heurtier, Anne</creator><creator>Schlotthauer, Gaston</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6289-0040</orcidid></search><sort><creationdate>20160501</creationdate><title>Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization</title><author>Colominas, Marcelo A. ; Humeau-Heurtier, Anne ; Schlotthauer, Gaston</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-a5acdfc35ce50ce02758a3817cf5ff4a8a2077a4b9a1a7559b626aed82c2207d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational efficiency</topic><topic>data-driven</topic><topic>Decomposition</topic><topic>Empirical Mode Decomposition</topic><topic>Engineering Sciences</topic><topic>Frequency modulation</topic><topic>Interpolation</topic><topic>non-stationary image</topic><topic>Optimization</topic><topic>Oscillations</topic><topic>Proposals</topic><topic>Signal and Image processing</topic><topic>Sparse matrices</topic><topic>Splines (mathematics)</topic><topic>State of the art</topic><topic>Transaction processing</topic><topic>Two dimensional</topic><topic>unconstrained optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colominas, Marcelo A.</creatorcontrib><creatorcontrib>Humeau-Heurtier, Anne</creatorcontrib><creatorcontrib>Schlotthauer, Gaston</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colominas, Marcelo A.</au><au>Humeau-Heurtier, Anne</au><au>Schlotthauer, Gaston</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>25</volume><issue>5</issue><spage>2288</spage><epage>2297</epage><pages>2288-2297</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper introduces a 2D extension of the empirical mode decomposition (EMD), through a novel approach based on unconstrained optimization. EMD is a fully data-driven method that locally separates, in a completely data-driven and unsupervised manner, signals into fast and slow oscillations. The present proposal implements the method in a very simple and fast way, and it is compared with the state-of-the-art methods evidencing the advantages of being computationally efficient, orientation-independent, and leads to better performances for the decomposition of amplitude modulated-frequency modulated (AM-FM) images. The resulting genuine 2D method is successfully tested on artificial AM-FM images and its capabilities are illustrated on a biomedical example. The proposed framework leaves room for an nD extension (n &gt; 2 ).</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26992022</pmid><doi>10.1109/TIP.2016.2541959</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6289-0040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2016-05, Vol.25 (5), p.2288-2297
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_26992022
source IEEE Electronic Library (IEL)
subjects Computational efficiency
data-driven
Decomposition
Empirical Mode Decomposition
Engineering Sciences
Frequency modulation
Interpolation
non-stationary image
Optimization
Oscillations
Proposals
Signal and Image processing
Sparse matrices
Splines (mathematics)
State of the art
Transaction processing
Two dimensional
unconstrained optimization
title Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orientation-Independent%20Empirical%20Mode%20Decomposition%20for%20Images%20Based%20on%20Unconstrained%20Optimization&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Colominas,%20Marcelo%20A.&rft.date=2016-05-01&rft.volume=25&rft.issue=5&rft.spage=2288&rft.epage=2297&rft.pages=2288-2297&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2016.2541959&rft_dat=%3Cproquest_RIE%3E4046710871%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787110126&rft_id=info:pmid/26992022&rft_ieee_id=7433433&rfr_iscdi=true