Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance

Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2016-04, Vol.8 (13), p.7309
Hauptverfasser: Wang, Ziya, Wang, Fengping, Li, Yan, Hu, Jianlin, Lu, Yanzhen, Xu, Mei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 7309
container_title Nanoscale
container_volume 8
creator Wang, Ziya
Wang, Fengping
Li, Yan
Hu, Jianlin
Lu, Yanzhen
Xu, Mei
description Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g(-1) even under a high mass loading (∼5 mg cm(-2)). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm(-3)) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g(-1). The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.
doi_str_mv 10.1039/c5nr08857g
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_26977698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26977698</sourcerecordid><originalsourceid>FETCH-LOGICAL-g248t-a10f6f72e8fe581063791b48d59dc4df28251cb08e74b4a9e1bff6075b0f3d9f3</originalsourceid><addsrcrecordid>eNo1j81KxDAcxIMg7rp68QEkL1DNR5sPb7K4urCyFz0vafJPt9qmIWkXfHsr6mlg5jcDg9ANJXeUcH1vq5CIUpVsztCSkZIUnEu2QJc5fxAiNBf8Ai2Y0FIKrZao34YRUteGT3C4n7qxjUeTAW-gcEOcvdewZziYMOQxTXacEuQHbHAYTtBhB7ltAvZDwhCOJti5EDNMbrAmGtuO7QlwhDQD_U96hc696TJc_-kKvW-e3tYvxW7_vF0_7oqGlWosDCVeeMlAeagUJYJLTetSuUo7WzrPFKuorYkCWdal0UBr7wWRVU08d9rzFbr93Y1T3YM7xNT2Jn0d_n_zb-10WnI</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Ziya ; Wang, Fengping ; Li, Yan ; Hu, Jianlin ; Lu, Yanzhen ; Xu, Mei</creator><creatorcontrib>Wang, Ziya ; Wang, Fengping ; Li, Yan ; Hu, Jianlin ; Lu, Yanzhen ; Xu, Mei</creatorcontrib><description>Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g(-1) even under a high mass loading (∼5 mg cm(-2)). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm(-3)) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g(-1). The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.</description><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr08857g</identifier><identifier>PMID: 26977698</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2016-04, Vol.8 (13), p.7309</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26977698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ziya</creatorcontrib><creatorcontrib>Wang, Fengping</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Hu, Jianlin</creatorcontrib><creatorcontrib>Lu, Yanzhen</creatorcontrib><creatorcontrib>Xu, Mei</creatorcontrib><title>Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g(-1) even under a high mass loading (∼5 mg cm(-2)). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm(-3)) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g(-1). The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.</description><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1j81KxDAcxIMg7rp68QEkL1DNR5sPb7K4urCyFz0vafJPt9qmIWkXfHsr6mlg5jcDg9ANJXeUcH1vq5CIUpVsztCSkZIUnEu2QJc5fxAiNBf8Ai2Y0FIKrZao34YRUteGT3C4n7qxjUeTAW-gcEOcvdewZziYMOQxTXacEuQHbHAYTtBhB7ltAvZDwhCOJti5EDNMbrAmGtuO7QlwhDQD_U96hc696TJc_-kKvW-e3tYvxW7_vF0_7oqGlWosDCVeeMlAeagUJYJLTetSuUo7WzrPFKuorYkCWdal0UBr7wWRVU08d9rzFbr93Y1T3YM7xNT2Jn0d_n_zb-10WnI</recordid><startdate>20160407</startdate><enddate>20160407</enddate><creator>Wang, Ziya</creator><creator>Wang, Fengping</creator><creator>Li, Yan</creator><creator>Hu, Jianlin</creator><creator>Lu, Yanzhen</creator><creator>Xu, Mei</creator><scope>NPM</scope></search><sort><creationdate>20160407</creationdate><title>Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance</title><author>Wang, Ziya ; Wang, Fengping ; Li, Yan ; Hu, Jianlin ; Lu, Yanzhen ; Xu, Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g248t-a10f6f72e8fe581063791b48d59dc4df28251cb08e74b4a9e1bff6075b0f3d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziya</creatorcontrib><creatorcontrib>Wang, Fengping</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Hu, Jianlin</creatorcontrib><creatorcontrib>Lu, Yanzhen</creatorcontrib><creatorcontrib>Xu, Mei</creatorcontrib><collection>PubMed</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ziya</au><au>Wang, Fengping</au><au>Li, Yan</au><au>Hu, Jianlin</au><au>Lu, Yanzhen</au><au>Xu, Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-04-07</date><risdate>2016</risdate><volume>8</volume><issue>13</issue><spage>7309</spage><pages>7309-</pages><eissn>2040-3372</eissn><abstract>Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g(-1) even under a high mass loading (∼5 mg cm(-2)). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm(-3)) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g(-1). The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.</abstract><cop>England</cop><pmid>26977698</pmid><doi>10.1039/c5nr08857g</doi></addata></record>
fulltext fulltext
identifier EISSN: 2040-3372
ispartof Nanoscale, 2016-04, Vol.8 (13), p.7309
issn 2040-3372
language eng
recordid cdi_pubmed_primary_26977698
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interlinked%20multiphase%20Fe-doped%20MnO2%20nanostructures:%20a%20novel%20design%20for%20enhanced%20pseudocapacitive%20performance&rft.jtitle=Nanoscale&rft.au=Wang,%20Ziya&rft.date=2016-04-07&rft.volume=8&rft.issue=13&rft.spage=7309&rft.pages=7309-&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr08857g&rft_dat=%3Cpubmed%3E26977698%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26977698&rfr_iscdi=true