LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells

Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-04, Vol.113 (15), p.4122-4127
Hauptverfasser: van Ravesteyn, Thomas W., Dekker, Marleen, Fish, Alexander, Sixma, Titia K., Wolters, Astrid, Dekker, Rob J., te Riele, Hein P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4127
container_issue 15
container_start_page 4122
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator van Ravesteyn, Thomas W.
Dekker, Marleen
Fish, Alexander
Sixma, Titia K.
Wolters, Astrid
Dekker, Rob J.
te Riele, Hein P. J.
description Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evadesMMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.
doi_str_mv 10.1073/pnas.1513315113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26951689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26469267</jstor_id><sourcerecordid>26469267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-569adb3697dcf2918aea24e0c65c0f0e39c11d1e73dd2d258a63ee5c3c88d2f83</originalsourceid><addsrcrecordid>eNqNkruO1DAUQCMEYoeFmgqIREOTXb9jN0ir5SmNoIHa8tg3sx459mAnICQ-HkczDLtUNHbhc4_vq2meYnSBUU8v99GUC8wxpfXA9F6zwkjhTjCF7jcrhEjfSUbYWfOolB1CSHGJHjZnRCiOhVSr5tf601U7JucHb83kU2zT0BYftwG6MmUTHbj2TWVS8NsUZxsgTd5BaU0I6Udpy7yZArRbiHDX42M7-jKayd50GfbG526fU332EKfWQgjlcfNgMKHAk-N93nx99_bL9Ydu_fn9x-urdWc5QlPHhTJuQ4XqnR2IwtKAIQyQFdyiAQFVFmOHoafOEUe4NIICcEutlI4Mkp43rw_e_bwZwdmaQDZB77MfTf6pk_H67kv0N3qbvmsmqWIMVcGroyCnbzOUSdfSlhJMhDQXjfvaWFGHgP8HZXwZjKjoy3_QXZpzrJ2olGRKcCmXvy8PlM2plAzDKW-M9LIEelkC_XcJasTz2-We-D9Tr8CLI7BEnnSYVotmmJBKPDsQuzKlfMvAhCKip78B7LPELA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784965880</pqid></control><display><type>article</type><title>LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>van Ravesteyn, Thomas W. ; Dekker, Marleen ; Fish, Alexander ; Sixma, Titia K. ; Wolters, Astrid ; Dekker, Rob J. ; te Riele, Hein P. J.</creator><creatorcontrib>van Ravesteyn, Thomas W. ; Dekker, Marleen ; Fish, Alexander ; Sixma, Titia K. ; Wolters, Astrid ; Dekker, Rob J. ; te Riele, Hein P. J.</creatorcontrib><description>Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by &gt;100-fold. Here we present a commercially available ssODN design that evadesMMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1513315113</identifier><identifier>PMID: 26951689</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Base Pair Mismatch ; Biological Sciences ; Cells ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA Breaks, Double-Stranded ; DNA Mismatch Repair ; DNA Repair ; DNA, Single-Stranded ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Genes ; Genetics ; Oligonucleotides - genetics ; Rodents</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-04, Vol.113 (15), p.4122-4127</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 12, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-569adb3697dcf2918aea24e0c65c0f0e39c11d1e73dd2d258a63ee5c3c88d2f83</citedby><cites>FETCH-LOGICAL-c500t-569adb3697dcf2918aea24e0c65c0f0e39c11d1e73dd2d258a63ee5c3c88d2f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26469267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26469267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26951689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Ravesteyn, Thomas W.</creatorcontrib><creatorcontrib>Dekker, Marleen</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Sixma, Titia K.</creatorcontrib><creatorcontrib>Wolters, Astrid</creatorcontrib><creatorcontrib>Dekker, Rob J.</creatorcontrib><creatorcontrib>te Riele, Hein P. J.</creatorcontrib><title>LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by &gt;100-fold. Here we present a commercially available ssODN design that evadesMMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.</description><subject>Animals</subject><subject>Base Pair Mismatch</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Mismatch Repair</subject><subject>DNA Repair</subject><subject>DNA, Single-Stranded</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Genes</subject><subject>Genetics</subject><subject>Oligonucleotides - genetics</subject><subject>Rodents</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkruO1DAUQCMEYoeFmgqIREOTXb9jN0ir5SmNoIHa8tg3sx459mAnICQ-HkczDLtUNHbhc4_vq2meYnSBUU8v99GUC8wxpfXA9F6zwkjhTjCF7jcrhEjfSUbYWfOolB1CSHGJHjZnRCiOhVSr5tf601U7JucHb83kU2zT0BYftwG6MmUTHbj2TWVS8NsUZxsgTd5BaU0I6Udpy7yZArRbiHDX42M7-jKayd50GfbG526fU332EKfWQgjlcfNgMKHAk-N93nx99_bL9Ydu_fn9x-urdWc5QlPHhTJuQ4XqnR2IwtKAIQyQFdyiAQFVFmOHoafOEUe4NIICcEutlI4Mkp43rw_e_bwZwdmaQDZB77MfTf6pk_H67kv0N3qbvmsmqWIMVcGroyCnbzOUSdfSlhJMhDQXjfvaWFGHgP8HZXwZjKjoy3_QXZpzrJ2olGRKcCmXvy8PlM2plAzDKW-M9LIEelkC_XcJasTz2-We-D9Tr8CLI7BEnnSYVotmmJBKPDsQuzKlfMvAhCKip78B7LPELA</recordid><startdate>20160412</startdate><enddate>20160412</enddate><creator>van Ravesteyn, Thomas W.</creator><creator>Dekker, Marleen</creator><creator>Fish, Alexander</creator><creator>Sixma, Titia K.</creator><creator>Wolters, Astrid</creator><creator>Dekker, Rob J.</creator><creator>te Riele, Hein P. J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160412</creationdate><title>LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells</title><author>van Ravesteyn, Thomas W. ; Dekker, Marleen ; Fish, Alexander ; Sixma, Titia K. ; Wolters, Astrid ; Dekker, Rob J. ; te Riele, Hein P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-569adb3697dcf2918aea24e0c65c0f0e39c11d1e73dd2d258a63ee5c3c88d2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Base Pair Mismatch</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Mismatch Repair</topic><topic>DNA Repair</topic><topic>DNA, Single-Stranded</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Genes</topic><topic>Genetics</topic><topic>Oligonucleotides - genetics</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Ravesteyn, Thomas W.</creatorcontrib><creatorcontrib>Dekker, Marleen</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Sixma, Titia K.</creatorcontrib><creatorcontrib>Wolters, Astrid</creatorcontrib><creatorcontrib>Dekker, Rob J.</creatorcontrib><creatorcontrib>te Riele, Hein P. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Ravesteyn, Thomas W.</au><au>Dekker, Marleen</au><au>Fish, Alexander</au><au>Sixma, Titia K.</au><au>Wolters, Astrid</au><au>Dekker, Rob J.</au><au>te Riele, Hein P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-04-12</date><risdate>2016</risdate><volume>113</volume><issue>15</issue><spage>4122</spage><epage>4127</epage><pages>4122-4127</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by &gt;100-fold. Here we present a commercially available ssODN design that evadesMMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26951689</pmid><doi>10.1073/pnas.1513315113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-04, Vol.113 (15), p.4122-4127
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_26951689
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Base Pair Mismatch
Biological Sciences
Cells
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA Breaks, Double-Stranded
DNA Mismatch Repair
DNA Repair
DNA, Single-Stranded
E coli
Escherichia coli
Escherichia coli - genetics
Genes
Genetics
Oligonucleotides - genetics
Rodents
title LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LNA%20modification%20of%20single-stranded%20DNA%20oligonucleotides%20allows%20subtle%20gene%20modification%20in%20mismatch-repair-proficient%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=van%20Ravesteyn,%20Thomas%20W.&rft.date=2016-04-12&rft.volume=113&rft.issue=15&rft.spage=4122&rft.epage=4127&rft.pages=4122-4127&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1513315113&rft_dat=%3Cjstor_pubme%3E26469267%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784965880&rft_id=info:pmid/26951689&rft_jstor_id=26469267&rfr_iscdi=true