Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions

Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2016-04, Vol.12 (14), p.3293-332
Hauptverfasser: Lin, Gigi L, Pathak, Jai A, Kim, Dong Hyun, Carlson, Marcia, Riguero, Valeria, Kim, Yoen Joo, Buff, Jean S, Fuller, Gerald G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 14
container_start_page 3293
container_title Soft matter
container_volume 12
creator Lin, Gigi L
Pathak, Jai A
Kim, Dong Hyun
Carlson, Marcia
Riguero, Valeria
Kim, Yoen Joo
Buff, Jean S
Fuller, Gerald G
description Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmaceutical industry. Interfacial hydrodynamic stresses encountered by protein therapeutic solutions under typical manufacturing, filling, and shipping conditions will impact protein stability, prompting a need to characterize the contribution of basic fluid kinematics to monoclonal antibody (mAb) destabilization. We demonstrate that dilatational surface deformations are more important to antibody stability when compared to constant-area shear of the A/S interface. We have constructed a dilatational interfacial rheometer that utilizes simultaneous pressure and bubble shape measurements to study the mechanical stability of mAbs under interfacial aging. It has a distinct advantage over methods utilizing the Young-Laplace equation, which incorrectly describes viscoelastic interfaces. We provide visual evidence of particle ejection from dilatated A/S interfaces and spectroscopic data of ejected mAb particles. These rheological studies frame a molecular understanding of the protein-protein interactions at the complex-fluid interface. We demonstrate that dilatational surface deformations are more important to antibody stability than constant-area shear of the A/S interface.
doi_str_mv 10.1039/c5sm02830b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26891116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808072813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-6cd45025a737fb7e02d1997e6af030beba6587b8a9c65a51d53b78bcf6e3037d3</originalsourceid><addsrcrecordid>eNqFkctPwzAMxiMEYjC4cAf1iJAGSdM8eoSJx6QhDoDErXIelYLaZiTpYf893YPtyMm2vp8t2x9CFwTfEkzLO81ii3NJsTpAJ0QUxYTLQh7ucvo1QqcxfmNMZUH4MRrlXJaEEH6CzKxLNtSgHTSZcQ0kSM53q8LWPrTrKgOtbWMDJBuzBYTkdGOzvey6rPWd1826EbrklDfLLPqmX-nxDB3V0ER7vo1j9Pn0-DF9mczfnmfT-_lE0yJPE65NwXDOQFBRK2FxbkhZCsuhxsNxVgFnUigJpeYMGDGMKiGVrrmlmApDx-h6M3cR_E9vY6paF4fNG-is72NFJJZY5JLQ_1EhRCkF5XxAbzaoDj7GYOtqEVwLYVkRXK0MqKbs_XVtwMMAX23n9qq1Zof-fXwALjdAiHqn7h2kv49fjLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777987366</pqid></control><display><type>article</type><title>Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lin, Gigi L ; Pathak, Jai A ; Kim, Dong Hyun ; Carlson, Marcia ; Riguero, Valeria ; Kim, Yoen Joo ; Buff, Jean S ; Fuller, Gerald G</creator><creatorcontrib>Lin, Gigi L ; Pathak, Jai A ; Kim, Dong Hyun ; Carlson, Marcia ; Riguero, Valeria ; Kim, Yoen Joo ; Buff, Jean S ; Fuller, Gerald G</creatorcontrib><description>Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmaceutical industry. Interfacial hydrodynamic stresses encountered by protein therapeutic solutions under typical manufacturing, filling, and shipping conditions will impact protein stability, prompting a need to characterize the contribution of basic fluid kinematics to monoclonal antibody (mAb) destabilization. We demonstrate that dilatational surface deformations are more important to antibody stability when compared to constant-area shear of the A/S interface. We have constructed a dilatational interfacial rheometer that utilizes simultaneous pressure and bubble shape measurements to study the mechanical stability of mAbs under interfacial aging. It has a distinct advantage over methods utilizing the Young-Laplace equation, which incorrectly describes viscoelastic interfaces. We provide visual evidence of particle ejection from dilatated A/S interfaces and spectroscopic data of ejected mAb particles. These rheological studies frame a molecular understanding of the protein-protein interactions at the complex-fluid interface. We demonstrate that dilatational surface deformations are more important to antibody stability than constant-area shear of the A/S interface.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm02830b</identifier><identifier>PMID: 26891116</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Antibodies, Monoclonal - chemistry ; Ejection ; Elasticity ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Mathematical analysis ; Monoclonal antibodies ; Protein Stability ; Proteins ; Rheology - instrumentation ; Stability ; Surface-Active Agents - chemistry ; Viscosity</subject><ispartof>Soft matter, 2016-04, Vol.12 (14), p.3293-332</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-6cd45025a737fb7e02d1997e6af030beba6587b8a9c65a51d53b78bcf6e3037d3</citedby><cites>FETCH-LOGICAL-c342t-6cd45025a737fb7e02d1997e6af030beba6587b8a9c65a51d53b78bcf6e3037d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26891116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Gigi L</creatorcontrib><creatorcontrib>Pathak, Jai A</creatorcontrib><creatorcontrib>Kim, Dong Hyun</creatorcontrib><creatorcontrib>Carlson, Marcia</creatorcontrib><creatorcontrib>Riguero, Valeria</creatorcontrib><creatorcontrib>Kim, Yoen Joo</creatorcontrib><creatorcontrib>Buff, Jean S</creatorcontrib><creatorcontrib>Fuller, Gerald G</creatorcontrib><title>Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmaceutical industry. Interfacial hydrodynamic stresses encountered by protein therapeutic solutions under typical manufacturing, filling, and shipping conditions will impact protein stability, prompting a need to characterize the contribution of basic fluid kinematics to monoclonal antibody (mAb) destabilization. We demonstrate that dilatational surface deformations are more important to antibody stability when compared to constant-area shear of the A/S interface. We have constructed a dilatational interfacial rheometer that utilizes simultaneous pressure and bubble shape measurements to study the mechanical stability of mAbs under interfacial aging. It has a distinct advantage over methods utilizing the Young-Laplace equation, which incorrectly describes viscoelastic interfaces. We provide visual evidence of particle ejection from dilatated A/S interfaces and spectroscopic data of ejected mAb particles. These rheological studies frame a molecular understanding of the protein-protein interactions at the complex-fluid interface. We demonstrate that dilatational surface deformations are more important to antibody stability than constant-area shear of the A/S interface.</description><subject>Algorithms</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Ejection</subject><subject>Elasticity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Monoclonal antibodies</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Rheology - instrumentation</subject><subject>Stability</subject><subject>Surface-Active Agents - chemistry</subject><subject>Viscosity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctPwzAMxiMEYjC4cAf1iJAGSdM8eoSJx6QhDoDErXIelYLaZiTpYf893YPtyMm2vp8t2x9CFwTfEkzLO81ii3NJsTpAJ0QUxYTLQh7ucvo1QqcxfmNMZUH4MRrlXJaEEH6CzKxLNtSgHTSZcQ0kSM53q8LWPrTrKgOtbWMDJBuzBYTkdGOzvey6rPWd1826EbrklDfLLPqmX-nxDB3V0ER7vo1j9Pn0-DF9mczfnmfT-_lE0yJPE65NwXDOQFBRK2FxbkhZCsuhxsNxVgFnUigJpeYMGDGMKiGVrrmlmApDx-h6M3cR_E9vY6paF4fNG-is72NFJJZY5JLQ_1EhRCkF5XxAbzaoDj7GYOtqEVwLYVkRXK0MqKbs_XVtwMMAX23n9qq1Zof-fXwALjdAiHqn7h2kv49fjLw</recordid><startdate>20160414</startdate><enddate>20160414</enddate><creator>Lin, Gigi L</creator><creator>Pathak, Jai A</creator><creator>Kim, Dong Hyun</creator><creator>Carlson, Marcia</creator><creator>Riguero, Valeria</creator><creator>Kim, Yoen Joo</creator><creator>Buff, Jean S</creator><creator>Fuller, Gerald G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160414</creationdate><title>Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions</title><author>Lin, Gigi L ; Pathak, Jai A ; Kim, Dong Hyun ; Carlson, Marcia ; Riguero, Valeria ; Kim, Yoen Joo ; Buff, Jean S ; Fuller, Gerald G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-6cd45025a737fb7e02d1997e6af030beba6587b8a9c65a51d53b78bcf6e3037d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Ejection</topic><topic>Elasticity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Monoclonal antibodies</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Rheology - instrumentation</topic><topic>Stability</topic><topic>Surface-Active Agents - chemistry</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Gigi L</creatorcontrib><creatorcontrib>Pathak, Jai A</creatorcontrib><creatorcontrib>Kim, Dong Hyun</creatorcontrib><creatorcontrib>Carlson, Marcia</creatorcontrib><creatorcontrib>Riguero, Valeria</creatorcontrib><creatorcontrib>Kim, Yoen Joo</creatorcontrib><creatorcontrib>Buff, Jean S</creatorcontrib><creatorcontrib>Fuller, Gerald G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Gigi L</au><au>Pathak, Jai A</au><au>Kim, Dong Hyun</au><au>Carlson, Marcia</au><au>Riguero, Valeria</au><au>Kim, Yoen Joo</au><au>Buff, Jean S</au><au>Fuller, Gerald G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2016-04-14</date><risdate>2016</risdate><volume>12</volume><issue>14</issue><spage>3293</spage><epage>332</epage><pages>3293-332</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmaceutical industry. Interfacial hydrodynamic stresses encountered by protein therapeutic solutions under typical manufacturing, filling, and shipping conditions will impact protein stability, prompting a need to characterize the contribution of basic fluid kinematics to monoclonal antibody (mAb) destabilization. We demonstrate that dilatational surface deformations are more important to antibody stability when compared to constant-area shear of the A/S interface. We have constructed a dilatational interfacial rheometer that utilizes simultaneous pressure and bubble shape measurements to study the mechanical stability of mAbs under interfacial aging. It has a distinct advantage over methods utilizing the Young-Laplace equation, which incorrectly describes viscoelastic interfaces. We provide visual evidence of particle ejection from dilatated A/S interfaces and spectroscopic data of ejected mAb particles. These rheological studies frame a molecular understanding of the protein-protein interactions at the complex-fluid interface. We demonstrate that dilatational surface deformations are more important to antibody stability than constant-area shear of the A/S interface.</abstract><cop>England</cop><pmid>26891116</pmid><doi>10.1039/c5sm02830b</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2016-04, Vol.12 (14), p.3293-332
issn 1744-683X
1744-6848
language eng
recordid cdi_pubmed_primary_26891116
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Algorithms
Antibodies, Monoclonal - chemistry
Ejection
Elasticity
Fluid dynamics
Fluid flow
Hydrodynamics
Mathematical analysis
Monoclonal antibodies
Protein Stability
Proteins
Rheology - instrumentation
Stability
Surface-Active Agents - chemistry
Viscosity
title Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20dilatational%20deformation%20accelerates%20particle%20formation%20in%20monoclonal%20antibody%20solutions&rft.jtitle=Soft%20matter&rft.au=Lin,%20Gigi%20L&rft.date=2016-04-14&rft.volume=12&rft.issue=14&rft.spage=3293&rft.epage=332&rft.pages=3293-332&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm02830b&rft_dat=%3Cproquest_pubme%3E1808072813%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777987366&rft_id=info:pmid/26891116&rfr_iscdi=true