Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells

The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2016-03, Vol.8 (9), p.5379-5385
Hauptverfasser: Kou, Ying-Shu, Yang, Song-Ting, Thiyagu, Subramani, Liu, Chien-Ting, Wu, Jia-Wei, Lin, Ching-Fuh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5385
container_issue 9
container_start_page 5379
container_title Nanoscale
container_volume 8
creator Kou, Ying-Shu
Yang, Song-Ting
Thiyagu, Subramani
Liu, Chien-Ting
Wu, Jia-Wei
Lin, Ching-Fuh
description The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of N , N ′-bis(3-methylphenyl)- N , N ′-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs 2 CO 3 ) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%. We chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device, and demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.
doi_str_mv 10.1039/c5nr08724d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26882957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1768563088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8ced81e736a5f98e48c7f15364b87716c9102f70717460778d10e9cc3b4912a93</originalsourceid><addsrcrecordid>eNqNkc1r20AQxZeS0CRuL7237LEUlOxqpf04BqdNC6GFfpzFejSyt8jaZEYq-L-PUrvuNacZmB-Pee8J8UarS61MuIJ6IOVdWbUvxHmpKlUY48qT426rM3HB_FspG4w1L8VZab0vQ-3OxcOP3E9jykNxTxmQGVsJkSghScYeYUx_UPZxh8SyyyQ3ab2R2HUJEg6wk5nWcUhwNcQh80gTjBNhW3DqE-RBbnYrSq3k3EeSgH3Pr8RpF3vG14e5EL8-ffy5_Fzcfbv9sry-K6BSfiw8YOs1OmNj3QWPlQfX6Xo2s_LOaQtBq7JzymlXWeWcb7XCAGBWVdBlDGYh3u91Z2MPE_LYbBM_fRAHzBM32gVTOqvUc1Dra2uU9zP6YY8CZWbCrrmntI20a7RqntpolvXX73_buJnhdwfdabXF9oj-i38G3u4BYjhe_9dpHgGet5A5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768563088</pqid></control><display><type>article</type><title>Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Kou, Ying-Shu ; Yang, Song-Ting ; Thiyagu, Subramani ; Liu, Chien-Ting ; Wu, Jia-Wei ; Lin, Ching-Fuh</creator><creatorcontrib>Kou, Ying-Shu ; Yang, Song-Ting ; Thiyagu, Subramani ; Liu, Chien-Ting ; Wu, Jia-Wei ; Lin, Ching-Fuh</creatorcontrib><description>The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of N , N ′-bis(3-methylphenyl)- N , N ′-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs 2 CO 3 ) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%. We chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device, and demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr08724d</identifier><identifier>PMID: 26882957</identifier><language>eng</language><publisher>England</publisher><subject>Carriers ; Devices ; Electrodes ; Minority carriers ; Nanostructure ; Photovoltaic cells ; Silicon ; Solar cells</subject><ispartof>Nanoscale, 2016-03, Vol.8 (9), p.5379-5385</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8ced81e736a5f98e48c7f15364b87716c9102f70717460778d10e9cc3b4912a93</citedby><cites>FETCH-LOGICAL-c408t-8ced81e736a5f98e48c7f15364b87716c9102f70717460778d10e9cc3b4912a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26882957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kou, Ying-Shu</creatorcontrib><creatorcontrib>Yang, Song-Ting</creatorcontrib><creatorcontrib>Thiyagu, Subramani</creatorcontrib><creatorcontrib>Liu, Chien-Ting</creatorcontrib><creatorcontrib>Wu, Jia-Wei</creatorcontrib><creatorcontrib>Lin, Ching-Fuh</creatorcontrib><title>Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of N , N ′-bis(3-methylphenyl)- N , N ′-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs 2 CO 3 ) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%. We chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device, and demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.</description><subject>Carriers</subject><subject>Devices</subject><subject>Electrodes</subject><subject>Minority carriers</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1r20AQxZeS0CRuL7237LEUlOxqpf04BqdNC6GFfpzFejSyt8jaZEYq-L-PUrvuNacZmB-Pee8J8UarS61MuIJ6IOVdWbUvxHmpKlUY48qT426rM3HB_FspG4w1L8VZab0vQ-3OxcOP3E9jykNxTxmQGVsJkSghScYeYUx_UPZxh8SyyyQ3ab2R2HUJEg6wk5nWcUhwNcQh80gTjBNhW3DqE-RBbnYrSq3k3EeSgH3Pr8RpF3vG14e5EL8-ffy5_Fzcfbv9sry-K6BSfiw8YOs1OmNj3QWPlQfX6Xo2s_LOaQtBq7JzymlXWeWcb7XCAGBWVdBlDGYh3u91Z2MPE_LYbBM_fRAHzBM32gVTOqvUc1Dra2uU9zP6YY8CZWbCrrmntI20a7RqntpolvXX73_buJnhdwfdabXF9oj-i38G3u4BYjhe_9dpHgGet5A5</recordid><startdate>20160307</startdate><enddate>20160307</enddate><creator>Kou, Ying-Shu</creator><creator>Yang, Song-Ting</creator><creator>Thiyagu, Subramani</creator><creator>Liu, Chien-Ting</creator><creator>Wu, Jia-Wei</creator><creator>Lin, Ching-Fuh</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160307</creationdate><title>Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells</title><author>Kou, Ying-Shu ; Yang, Song-Ting ; Thiyagu, Subramani ; Liu, Chien-Ting ; Wu, Jia-Wei ; Lin, Ching-Fuh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8ced81e736a5f98e48c7f15364b87716c9102f70717460778d10e9cc3b4912a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carriers</topic><topic>Devices</topic><topic>Electrodes</topic><topic>Minority carriers</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Ying-Shu</creatorcontrib><creatorcontrib>Yang, Song-Ting</creatorcontrib><creatorcontrib>Thiyagu, Subramani</creatorcontrib><creatorcontrib>Liu, Chien-Ting</creatorcontrib><creatorcontrib>Wu, Jia-Wei</creatorcontrib><creatorcontrib>Lin, Ching-Fuh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Ying-Shu</au><au>Yang, Song-Ting</au><au>Thiyagu, Subramani</au><au>Liu, Chien-Ting</au><au>Wu, Jia-Wei</au><au>Lin, Ching-Fuh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-03-07</date><risdate>2016</risdate><volume>8</volume><issue>9</issue><spage>5379</spage><epage>5385</epage><pages>5379-5385</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of N , N ′-bis(3-methylphenyl)- N , N ′-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs 2 CO 3 ) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%. We chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device, and demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.</abstract><cop>England</cop><pmid>26882957</pmid><doi>10.1039/c5nr08724d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2016-03, Vol.8 (9), p.5379-5385
issn 2040-3364
2040-3372
language eng
recordid cdi_pubmed_primary_26882957
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Carriers
Devices
Electrodes
Minority carriers
Nanostructure
Photovoltaic cells
Silicon
Solar cells
title Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution-processed%20carrier%20selective%20layers%20for%20high%20efficiency%20organic/nanostructured-silicon%20hybrid%20solar%20cells&rft.jtitle=Nanoscale&rft.au=Kou,%20Ying-Shu&rft.date=2016-03-07&rft.volume=8&rft.issue=9&rft.spage=5379&rft.epage=5385&rft.pages=5379-5385&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr08724d&rft_dat=%3Cproquest_pubme%3E1768563088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768563088&rft_id=info:pmid/26882957&rfr_iscdi=true