Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells
The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device....
Gespeichert in:
Veröffentlicht in: | Nanoscale 2016-03, Vol.8 (9), p.5379-5385 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5385 |
---|---|
container_issue | 9 |
container_start_page | 5379 |
container_title | Nanoscale |
container_volume | 8 |
creator | Kou, Ying-Shu Yang, Song-Ting Thiyagu, Subramani Liu, Chien-Ting Wu, Jia-Wei Lin, Ching-Fuh |
description | The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of
N
,
N
′-bis(3-methylphenyl)-
N
,
N
′-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs
2
CO
3
) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.
We chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device, and demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%. |
doi_str_mv | 10.1039/c5nr08724d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26882957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1768563088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8ced81e736a5f98e48c7f15364b87716c9102f70717460778d10e9cc3b4912a93</originalsourceid><addsrcrecordid>eNqNkc1r20AQxZeS0CRuL7237LEUlOxqpf04BqdNC6GFfpzFejSyt8jaZEYq-L-PUrvuNacZmB-Pee8J8UarS61MuIJ6IOVdWbUvxHmpKlUY48qT426rM3HB_FspG4w1L8VZab0vQ-3OxcOP3E9jykNxTxmQGVsJkSghScYeYUx_UPZxh8SyyyQ3ab2R2HUJEg6wk5nWcUhwNcQh80gTjBNhW3DqE-RBbnYrSq3k3EeSgH3Pr8RpF3vG14e5EL8-ffy5_Fzcfbv9sry-K6BSfiw8YOs1OmNj3QWPlQfX6Xo2s_LOaQtBq7JzymlXWeWcb7XCAGBWVdBlDGYh3u91Z2MPE_LYbBM_fRAHzBM32gVTOqvUc1Dra2uU9zP6YY8CZWbCrrmntI20a7RqntpolvXX73_buJnhdwfdabXF9oj-i38G3u4BYjhe_9dpHgGet5A5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768563088</pqid></control><display><type>article</type><title>Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Kou, Ying-Shu ; Yang, Song-Ting ; Thiyagu, Subramani ; Liu, Chien-Ting ; Wu, Jia-Wei ; Lin, Ching-Fuh</creator><creatorcontrib>Kou, Ying-Shu ; Yang, Song-Ting ; Thiyagu, Subramani ; Liu, Chien-Ting ; Wu, Jia-Wei ; Lin, Ching-Fuh</creatorcontrib><description>The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of
N
,
N
′-bis(3-methylphenyl)-
N
,
N
′-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs
2
CO
3
) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.
We chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device, and demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr08724d</identifier><identifier>PMID: 26882957</identifier><language>eng</language><publisher>England</publisher><subject>Carriers ; Devices ; Electrodes ; Minority carriers ; Nanostructure ; Photovoltaic cells ; Silicon ; Solar cells</subject><ispartof>Nanoscale, 2016-03, Vol.8 (9), p.5379-5385</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8ced81e736a5f98e48c7f15364b87716c9102f70717460778d10e9cc3b4912a93</citedby><cites>FETCH-LOGICAL-c408t-8ced81e736a5f98e48c7f15364b87716c9102f70717460778d10e9cc3b4912a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26882957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kou, Ying-Shu</creatorcontrib><creatorcontrib>Yang, Song-Ting</creatorcontrib><creatorcontrib>Thiyagu, Subramani</creatorcontrib><creatorcontrib>Liu, Chien-Ting</creatorcontrib><creatorcontrib>Wu, Jia-Wei</creatorcontrib><creatorcontrib>Lin, Ching-Fuh</creatorcontrib><title>Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of
N
,
N
′-bis(3-methylphenyl)-
N
,
N
′-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs
2
CO
3
) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.
We chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device, and demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.</description><subject>Carriers</subject><subject>Devices</subject><subject>Electrodes</subject><subject>Minority carriers</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1r20AQxZeS0CRuL7237LEUlOxqpf04BqdNC6GFfpzFejSyt8jaZEYq-L-PUrvuNacZmB-Pee8J8UarS61MuIJ6IOVdWbUvxHmpKlUY48qT426rM3HB_FspG4w1L8VZab0vQ-3OxcOP3E9jykNxTxmQGVsJkSghScYeYUx_UPZxh8SyyyQ3ab2R2HUJEg6wk5nWcUhwNcQh80gTjBNhW3DqE-RBbnYrSq3k3EeSgH3Pr8RpF3vG14e5EL8-ffy5_Fzcfbv9sry-K6BSfiw8YOs1OmNj3QWPlQfX6Xo2s_LOaQtBq7JzymlXWeWcb7XCAGBWVdBlDGYh3u91Z2MPE_LYbBM_fRAHzBM32gVTOqvUc1Dra2uU9zP6YY8CZWbCrrmntI20a7RqntpolvXX73_buJnhdwfdabXF9oj-i38G3u4BYjhe_9dpHgGet5A5</recordid><startdate>20160307</startdate><enddate>20160307</enddate><creator>Kou, Ying-Shu</creator><creator>Yang, Song-Ting</creator><creator>Thiyagu, Subramani</creator><creator>Liu, Chien-Ting</creator><creator>Wu, Jia-Wei</creator><creator>Lin, Ching-Fuh</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160307</creationdate><title>Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells</title><author>Kou, Ying-Shu ; Yang, Song-Ting ; Thiyagu, Subramani ; Liu, Chien-Ting ; Wu, Jia-Wei ; Lin, Ching-Fuh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8ced81e736a5f98e48c7f15364b87716c9102f70717460778d10e9cc3b4912a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carriers</topic><topic>Devices</topic><topic>Electrodes</topic><topic>Minority carriers</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Ying-Shu</creatorcontrib><creatorcontrib>Yang, Song-Ting</creatorcontrib><creatorcontrib>Thiyagu, Subramani</creatorcontrib><creatorcontrib>Liu, Chien-Ting</creatorcontrib><creatorcontrib>Wu, Jia-Wei</creatorcontrib><creatorcontrib>Lin, Ching-Fuh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Ying-Shu</au><au>Yang, Song-Ting</au><au>Thiyagu, Subramani</au><au>Liu, Chien-Ting</au><au>Wu, Jia-Wei</au><au>Lin, Ching-Fuh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-03-07</date><risdate>2016</risdate><volume>8</volume><issue>9</issue><spage>5379</spage><epage>5385</epage><pages>5379-5385</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of
N
,
N
′-bis(3-methylphenyl)-
N
,
N
′-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs
2
CO
3
) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.
We chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device, and demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.</abstract><cop>England</cop><pmid>26882957</pmid><doi>10.1039/c5nr08724d</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2016-03, Vol.8 (9), p.5379-5385 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_pubmed_primary_26882957 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Carriers Devices Electrodes Minority carriers Nanostructure Photovoltaic cells Silicon Solar cells |
title | Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution-processed%20carrier%20selective%20layers%20for%20high%20efficiency%20organic/nanostructured-silicon%20hybrid%20solar%20cells&rft.jtitle=Nanoscale&rft.au=Kou,%20Ying-Shu&rft.date=2016-03-07&rft.volume=8&rft.issue=9&rft.spage=5379&rft.epage=5385&rft.pages=5379-5385&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr08724d&rft_dat=%3Cproquest_pubme%3E1768563088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768563088&rft_id=info:pmid/26882957&rfr_iscdi=true |