Variational tensor approach for approximating the rare-event kinetics of macromolecular systems
Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-02, Vol.144 (5), p.054105-054105 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 054105 |
---|---|
container_issue | 5 |
container_start_page | 054105 |
container_title | The Journal of chemical physics |
container_volume | 144 |
creator | Nüske, Feliks Schneider, Reinhold Vitalini, Francesca Noé, Frank |
description | Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes. |
doi_str_mv | 10.1063/1.4940774 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26851906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121873115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-31958df0204b01368d1d3fddda9fbedb03982f9bc733776b8d8b331cf17a52a13</originalsourceid><addsrcrecordid>eNp90E1LHTEUBuBQLPVqu_APSMBNLYw9ZzI3H0uRfoHQTdttyOSjjs5MrklG6r9v2ntVaMHVIfDw5pyXkCOEMwTO3uNZpzoQontBVghSNYIr2CMrgBYbxYHvk4OcrwEARdu9Ivstl2tUwFdE_zBpMGWIsxlp8XOOiZrNJkVjr2h4ePwapmrmn7RceZpM8o2_83OhN8Psy2AzjYFOxqY4xdHbZTSJ5vtc_JRfk5fBjNm_2c1D8v3jh28Xn5vLr5--XJxfNrZDWRqGai1dgBa6HpBx6dCx4JwzKvTe9cCUbIPqrWBMCN5LJ3vG0AYUZt0aZIfk7Ta3bnu7-Fz0NGTrx9HMPi5Zo-AdMiE5VHryD72OS6r3Z91ii1IwxHVVp1tVr8o5-aA3qbaQ7jWC_tO6Rr1rvdrjXeLST949yoeaK3i3BdkO5W_bj-YupqckvXHhOfz_178B_GmZQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121873115</pqid></control><display><type>article</type><title>Variational tensor approach for approximating the rare-event kinetics of macromolecular systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nüske, Feliks ; Schneider, Reinhold ; Vitalini, Francesca ; Noé, Frank</creator><creatorcontrib>Nüske, Feliks ; Schneider, Reinhold ; Vitalini, Francesca ; Noé, Frank</creatorcontrib><description>Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4940774</identifier><identifier>PMID: 26851906</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Basis functions ; Combinatorial analysis ; Eigenvalues ; Eigenvectors ; Macromolecules ; Molecular dynamics ; Physics</subject><ispartof>The Journal of chemical physics, 2016-02, Vol.144 (5), p.054105-054105</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-31958df0204b01368d1d3fddda9fbedb03982f9bc733776b8d8b331cf17a52a13</citedby><cites>FETCH-LOGICAL-c418t-31958df0204b01368d1d3fddda9fbedb03982f9bc733776b8d8b331cf17a52a13</cites><orcidid>0000-0003-4169-9324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4940774$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26851906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nüske, Feliks</creatorcontrib><creatorcontrib>Schneider, Reinhold</creatorcontrib><creatorcontrib>Vitalini, Francesca</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><title>Variational tensor approach for approximating the rare-event kinetics of macromolecular systems</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes.</description><subject>Basis functions</subject><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Macromolecules</subject><subject>Molecular dynamics</subject><subject>Physics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1LHTEUBuBQLPVqu_APSMBNLYw9ZzI3H0uRfoHQTdttyOSjjs5MrklG6r9v2ntVaMHVIfDw5pyXkCOEMwTO3uNZpzoQontBVghSNYIr2CMrgBYbxYHvk4OcrwEARdu9Ivstl2tUwFdE_zBpMGWIsxlp8XOOiZrNJkVjr2h4ePwapmrmn7RceZpM8o2_83OhN8Psy2AzjYFOxqY4xdHbZTSJ5vtc_JRfk5fBjNm_2c1D8v3jh28Xn5vLr5--XJxfNrZDWRqGai1dgBa6HpBx6dCx4JwzKvTe9cCUbIPqrWBMCN5LJ3vG0AYUZt0aZIfk7Ta3bnu7-Fz0NGTrx9HMPi5Zo-AdMiE5VHryD72OS6r3Z91ii1IwxHVVp1tVr8o5-aA3qbaQ7jWC_tO6Rr1rvdrjXeLST949yoeaK3i3BdkO5W_bj-YupqckvXHhOfz_178B_GmZQQ</recordid><startdate>20160207</startdate><enddate>20160207</enddate><creator>Nüske, Feliks</creator><creator>Schneider, Reinhold</creator><creator>Vitalini, Francesca</creator><creator>Noé, Frank</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid></search><sort><creationdate>20160207</creationdate><title>Variational tensor approach for approximating the rare-event kinetics of macromolecular systems</title><author>Nüske, Feliks ; Schneider, Reinhold ; Vitalini, Francesca ; Noé, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-31958df0204b01368d1d3fddda9fbedb03982f9bc733776b8d8b331cf17a52a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Basis functions</topic><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Macromolecules</topic><topic>Molecular dynamics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nüske, Feliks</creatorcontrib><creatorcontrib>Schneider, Reinhold</creatorcontrib><creatorcontrib>Vitalini, Francesca</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nüske, Feliks</au><au>Schneider, Reinhold</au><au>Vitalini, Francesca</au><au>Noé, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational tensor approach for approximating the rare-event kinetics of macromolecular systems</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-02-07</date><risdate>2016</risdate><volume>144</volume><issue>5</issue><spage>054105</spage><epage>054105</epage><pages>054105-054105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26851906</pmid><doi>10.1063/1.4940774</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-02, Vol.144 (5), p.054105-054105 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_26851906 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Basis functions Combinatorial analysis Eigenvalues Eigenvectors Macromolecules Molecular dynamics Physics |
title | Variational tensor approach for approximating the rare-event kinetics of macromolecular systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20tensor%20approach%20for%20approximating%20the%20rare-event%20kinetics%20of%20macromolecular%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=N%C3%BCske,%20Feliks&rft.date=2016-02-07&rft.volume=144&rft.issue=5&rft.spage=054105&rft.epage=054105&rft.pages=054105-054105&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4940774&rft_dat=%3Cproquest_pubme%3E2121873115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121873115&rft_id=info:pmid/26851906&rfr_iscdi=true |