Variational tensor approach for approximating the rare-event kinetics of macromolecular systems

Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-02, Vol.144 (5), p.054105-054105
Hauptverfasser: Nüske, Feliks, Schneider, Reinhold, Vitalini, Francesca, Noé, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 054105
container_issue 5
container_start_page 054105
container_title The Journal of chemical physics
container_volume 144
creator Nüske, Feliks
Schneider, Reinhold
Vitalini, Francesca
Noé, Frank
description Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes.
doi_str_mv 10.1063/1.4940774
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26851906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121873115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-31958df0204b01368d1d3fddda9fbedb03982f9bc733776b8d8b331cf17a52a13</originalsourceid><addsrcrecordid>eNp90E1LHTEUBuBQLPVqu_APSMBNLYw9ZzI3H0uRfoHQTdttyOSjjs5MrklG6r9v2ntVaMHVIfDw5pyXkCOEMwTO3uNZpzoQontBVghSNYIr2CMrgBYbxYHvk4OcrwEARdu9Ivstl2tUwFdE_zBpMGWIsxlp8XOOiZrNJkVjr2h4ePwapmrmn7RceZpM8o2_83OhN8Psy2AzjYFOxqY4xdHbZTSJ5vtc_JRfk5fBjNm_2c1D8v3jh28Xn5vLr5--XJxfNrZDWRqGai1dgBa6HpBx6dCx4JwzKvTe9cCUbIPqrWBMCN5LJ3vG0AYUZt0aZIfk7Ta3bnu7-Fz0NGTrx9HMPi5Zo-AdMiE5VHryD72OS6r3Z91ii1IwxHVVp1tVr8o5-aA3qbaQ7jWC_tO6Rr1rvdrjXeLST949yoeaK3i3BdkO5W_bj-YupqckvXHhOfz_178B_GmZQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121873115</pqid></control><display><type>article</type><title>Variational tensor approach for approximating the rare-event kinetics of macromolecular systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nüske, Feliks ; Schneider, Reinhold ; Vitalini, Francesca ; Noé, Frank</creator><creatorcontrib>Nüske, Feliks ; Schneider, Reinhold ; Vitalini, Francesca ; Noé, Frank</creatorcontrib><description>Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4940774</identifier><identifier>PMID: 26851906</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Basis functions ; Combinatorial analysis ; Eigenvalues ; Eigenvectors ; Macromolecules ; Molecular dynamics ; Physics</subject><ispartof>The Journal of chemical physics, 2016-02, Vol.144 (5), p.054105-054105</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-31958df0204b01368d1d3fddda9fbedb03982f9bc733776b8d8b331cf17a52a13</citedby><cites>FETCH-LOGICAL-c418t-31958df0204b01368d1d3fddda9fbedb03982f9bc733776b8d8b331cf17a52a13</cites><orcidid>0000-0003-4169-9324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4940774$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26851906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nüske, Feliks</creatorcontrib><creatorcontrib>Schneider, Reinhold</creatorcontrib><creatorcontrib>Vitalini, Francesca</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><title>Variational tensor approach for approximating the rare-event kinetics of macromolecular systems</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes.</description><subject>Basis functions</subject><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Macromolecules</subject><subject>Molecular dynamics</subject><subject>Physics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1LHTEUBuBQLPVqu_APSMBNLYw9ZzI3H0uRfoHQTdttyOSjjs5MrklG6r9v2ntVaMHVIfDw5pyXkCOEMwTO3uNZpzoQontBVghSNYIr2CMrgBYbxYHvk4OcrwEARdu9Ivstl2tUwFdE_zBpMGWIsxlp8XOOiZrNJkVjr2h4ePwapmrmn7RceZpM8o2_83OhN8Psy2AzjYFOxqY4xdHbZTSJ5vtc_JRfk5fBjNm_2c1D8v3jh28Xn5vLr5--XJxfNrZDWRqGai1dgBa6HpBx6dCx4JwzKvTe9cCUbIPqrWBMCN5LJ3vG0AYUZt0aZIfk7Ta3bnu7-Fz0NGTrx9HMPi5Zo-AdMiE5VHryD72OS6r3Z91ii1IwxHVVp1tVr8o5-aA3qbaQ7jWC_tO6Rr1rvdrjXeLST949yoeaK3i3BdkO5W_bj-YupqckvXHhOfz_178B_GmZQQ</recordid><startdate>20160207</startdate><enddate>20160207</enddate><creator>Nüske, Feliks</creator><creator>Schneider, Reinhold</creator><creator>Vitalini, Francesca</creator><creator>Noé, Frank</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid></search><sort><creationdate>20160207</creationdate><title>Variational tensor approach for approximating the rare-event kinetics of macromolecular systems</title><author>Nüske, Feliks ; Schneider, Reinhold ; Vitalini, Francesca ; Noé, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-31958df0204b01368d1d3fddda9fbedb03982f9bc733776b8d8b331cf17a52a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Basis functions</topic><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Macromolecules</topic><topic>Molecular dynamics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nüske, Feliks</creatorcontrib><creatorcontrib>Schneider, Reinhold</creatorcontrib><creatorcontrib>Vitalini, Francesca</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nüske, Feliks</au><au>Schneider, Reinhold</au><au>Vitalini, Francesca</au><au>Noé, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational tensor approach for approximating the rare-event kinetics of macromolecular systems</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-02-07</date><risdate>2016</risdate><volume>144</volume><issue>5</issue><spage>054105</spage><epage>054105</epage><pages>054105-054105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26851906</pmid><doi>10.1063/1.4940774</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-02, Vol.144 (5), p.054105-054105
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_26851906
source AIP Journals Complete; Alma/SFX Local Collection
subjects Basis functions
Combinatorial analysis
Eigenvalues
Eigenvectors
Macromolecules
Molecular dynamics
Physics
title Variational tensor approach for approximating the rare-event kinetics of macromolecular systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20tensor%20approach%20for%20approximating%20the%20rare-event%20kinetics%20of%20macromolecular%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=N%C3%BCske,%20Feliks&rft.date=2016-02-07&rft.volume=144&rft.issue=5&rft.spage=054105&rft.epage=054105&rft.pages=054105-054105&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4940774&rft_dat=%3Cproquest_pubme%3E2121873115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121873115&rft_id=info:pmid/26851906&rfr_iscdi=true