Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm
Ten years have passed since the beginning of graphene research. In this period we have witnessed breakthroughs both in fundamental and applied research. However, the development of graphene devices for mass production has not yet reached the same level of progress. The architecture of graphene field...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2016-03, Vol.28 (8), p.085302-085302 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 085302 |
---|---|
container_issue | 8 |
container_start_page | 085302 |
container_title | Journal of physics. Condensed matter |
container_volume | 28 |
creator | Vieira, N C S Borme, J Machado, G Cerqueira, F Freitas, P P Zucolotto, V Peres, N M R Alpuim, P |
description | Ten years have passed since the beginning of graphene research. In this period we have witnessed breakthroughs both in fundamental and applied research. However, the development of graphene devices for mass production has not yet reached the same level of progress. The architecture of graphene field-effect transistors (FET) has not significantly changed, and the integration of devices at the wafer scale has generally not been sought. Currently, whenever an electrolyte-gated FET (EGFET) is used, an external, cumbersome, out-of-plane gate electrode is required. Here, an alternative architecture for graphene EGFET is presented. In this architecture, source, drain, and gate are in the same plane, eliminating the need for an external gate electrode and the use of an additional reservoir to confine the electrolyte inside the transistor active zone. This planar structure with an integrated gate allows for wafer-scale fabrication of high-performance graphene EGFETs, with carrier mobility up to 1800 cm2 V−1 s−1. As a proof-of principle, a chemical sensor was achieved. It is shown that the sensor can discriminate between saline solutions of different concentrations. The proposed architecture will facilitate the mass production of graphene sensors, materializing the potential of previous achievements in fundamental and applied graphene research. |
doi_str_mv | 10.1088/0953-8984/28/8/085302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26830656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1764138212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-58534df512559ec2cc5e4a3ce661de46e41f00a2f85ded26ef658fcbfa6a5d593</originalsourceid><addsrcrecordid>eNqFkU1PAjEQhhujEUR_gqZHLyttty3doyGKJiReNDFemtKdwpL9wLYbw7-3CHLlNJmZZ77eQeiWkgdKlBqTQuSZKhQfMzVOrhI5YWdoSHNJM8nV5zkaHpkBugphTQjhKueXaMCkyokUcoi-Zt5sVtACdhXUZQbOgY04etOGKsTOY-O92eKfKq5w1UZYehOhxFAnzHf1NlYWL1Mo4GBNnTKxw4wQ3DTX6MKZOsDNwY7Qx_PT-_Qlm7_NXqeP88xyUsRMpM156QRlQhRgmbUCuMktSElL4BI4dYQY5pQooWQSnBTK2YUz0ohSFPkI3e_7bnz33UOIuqmChbo2LXR90FSlu4tiIulpdCI5zRWjLKFij1rfheDB6Y2vGuO3mhK9-4Deqat36mqmdHL_PpDq7g4j-kUD5bHqX_IE0D1QdRu97nrfJnFONP0F7M-QXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764138212</pqid></control><display><type>article</type><title>Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vieira, N C S ; Borme, J ; Machado, G ; Cerqueira, F ; Freitas, P P ; Zucolotto, V ; Peres, N M R ; Alpuim, P</creator><creatorcontrib>Vieira, N C S ; Borme, J ; Machado, G ; Cerqueira, F ; Freitas, P P ; Zucolotto, V ; Peres, N M R ; Alpuim, P</creatorcontrib><description>Ten years have passed since the beginning of graphene research. In this period we have witnessed breakthroughs both in fundamental and applied research. However, the development of graphene devices for mass production has not yet reached the same level of progress. The architecture of graphene field-effect transistors (FET) has not significantly changed, and the integration of devices at the wafer scale has generally not been sought. Currently, whenever an electrolyte-gated FET (EGFET) is used, an external, cumbersome, out-of-plane gate electrode is required. Here, an alternative architecture for graphene EGFET is presented. In this architecture, source, drain, and gate are in the same plane, eliminating the need for an external gate electrode and the use of an additional reservoir to confine the electrolyte inside the transistor active zone. This planar structure with an integrated gate allows for wafer-scale fabrication of high-performance graphene EGFETs, with carrier mobility up to 1800 cm2 V−1 s−1. As a proof-of principle, a chemical sensor was achieved. It is shown that the sensor can discriminate between saline solutions of different concentrations. The proposed architecture will facilitate the mass production of graphene sensors, materializing the potential of previous achievements in fundamental and applied graphene research.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/28/8/085302</identifier><identifier>PMID: 26830656</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Architecture ; chemical sensor ; Devices ; Electrodes ; Field effect transistors ; field-effect transistor ; gate capacitance ; Gates ; Graphene ; Mass production ; photolithography ; Semiconductor devices</subject><ispartof>Journal of physics. Condensed matter, 2016-03, Vol.28 (8), p.085302-085302</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-58534df512559ec2cc5e4a3ce661de46e41f00a2f85ded26ef658fcbfa6a5d593</citedby><cites>FETCH-LOGICAL-c409t-58534df512559ec2cc5e4a3ce661de46e41f00a2f85ded26ef658fcbfa6a5d593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/28/8/085302/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26830656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vieira, N C S</creatorcontrib><creatorcontrib>Borme, J</creatorcontrib><creatorcontrib>Machado, G</creatorcontrib><creatorcontrib>Cerqueira, F</creatorcontrib><creatorcontrib>Freitas, P P</creatorcontrib><creatorcontrib>Zucolotto, V</creatorcontrib><creatorcontrib>Peres, N M R</creatorcontrib><creatorcontrib>Alpuim, P</creatorcontrib><title>Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Ten years have passed since the beginning of graphene research. In this period we have witnessed breakthroughs both in fundamental and applied research. However, the development of graphene devices for mass production has not yet reached the same level of progress. The architecture of graphene field-effect transistors (FET) has not significantly changed, and the integration of devices at the wafer scale has generally not been sought. Currently, whenever an electrolyte-gated FET (EGFET) is used, an external, cumbersome, out-of-plane gate electrode is required. Here, an alternative architecture for graphene EGFET is presented. In this architecture, source, drain, and gate are in the same plane, eliminating the need for an external gate electrode and the use of an additional reservoir to confine the electrolyte inside the transistor active zone. This planar structure with an integrated gate allows for wafer-scale fabrication of high-performance graphene EGFETs, with carrier mobility up to 1800 cm2 V−1 s−1. As a proof-of principle, a chemical sensor was achieved. It is shown that the sensor can discriminate between saline solutions of different concentrations. The proposed architecture will facilitate the mass production of graphene sensors, materializing the potential of previous achievements in fundamental and applied graphene research.</description><subject>Architecture</subject><subject>chemical sensor</subject><subject>Devices</subject><subject>Electrodes</subject><subject>Field effect transistors</subject><subject>field-effect transistor</subject><subject>gate capacitance</subject><subject>Gates</subject><subject>Graphene</subject><subject>Mass production</subject><subject>photolithography</subject><subject>Semiconductor devices</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PAjEQhhujEUR_gqZHLyttty3doyGKJiReNDFemtKdwpL9wLYbw7-3CHLlNJmZZ77eQeiWkgdKlBqTQuSZKhQfMzVOrhI5YWdoSHNJM8nV5zkaHpkBugphTQjhKueXaMCkyokUcoi-Zt5sVtACdhXUZQbOgY04etOGKsTOY-O92eKfKq5w1UZYehOhxFAnzHf1NlYWL1Mo4GBNnTKxw4wQ3DTX6MKZOsDNwY7Qx_PT-_Qlm7_NXqeP88xyUsRMpM156QRlQhRgmbUCuMktSElL4BI4dYQY5pQooWQSnBTK2YUz0ohSFPkI3e_7bnz33UOIuqmChbo2LXR90FSlu4tiIulpdCI5zRWjLKFij1rfheDB6Y2vGuO3mhK9-4Deqat36mqmdHL_PpDq7g4j-kUD5bHqX_IE0D1QdRu97nrfJnFONP0F7M-QXg</recordid><startdate>20160302</startdate><enddate>20160302</enddate><creator>Vieira, N C S</creator><creator>Borme, J</creator><creator>Machado, G</creator><creator>Cerqueira, F</creator><creator>Freitas, P P</creator><creator>Zucolotto, V</creator><creator>Peres, N M R</creator><creator>Alpuim, P</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160302</creationdate><title>Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm</title><author>Vieira, N C S ; Borme, J ; Machado, G ; Cerqueira, F ; Freitas, P P ; Zucolotto, V ; Peres, N M R ; Alpuim, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-58534df512559ec2cc5e4a3ce661de46e41f00a2f85ded26ef658fcbfa6a5d593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Architecture</topic><topic>chemical sensor</topic><topic>Devices</topic><topic>Electrodes</topic><topic>Field effect transistors</topic><topic>field-effect transistor</topic><topic>gate capacitance</topic><topic>Gates</topic><topic>Graphene</topic><topic>Mass production</topic><topic>photolithography</topic><topic>Semiconductor devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vieira, N C S</creatorcontrib><creatorcontrib>Borme, J</creatorcontrib><creatorcontrib>Machado, G</creatorcontrib><creatorcontrib>Cerqueira, F</creatorcontrib><creatorcontrib>Freitas, P P</creatorcontrib><creatorcontrib>Zucolotto, V</creatorcontrib><creatorcontrib>Peres, N M R</creatorcontrib><creatorcontrib>Alpuim, P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vieira, N C S</au><au>Borme, J</au><au>Machado, G</au><au>Cerqueira, F</au><au>Freitas, P P</au><au>Zucolotto, V</au><au>Peres, N M R</au><au>Alpuim, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2016-03-02</date><risdate>2016</risdate><volume>28</volume><issue>8</issue><spage>085302</spage><epage>085302</epage><pages>085302-085302</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Ten years have passed since the beginning of graphene research. In this period we have witnessed breakthroughs both in fundamental and applied research. However, the development of graphene devices for mass production has not yet reached the same level of progress. The architecture of graphene field-effect transistors (FET) has not significantly changed, and the integration of devices at the wafer scale has generally not been sought. Currently, whenever an electrolyte-gated FET (EGFET) is used, an external, cumbersome, out-of-plane gate electrode is required. Here, an alternative architecture for graphene EGFET is presented. In this architecture, source, drain, and gate are in the same plane, eliminating the need for an external gate electrode and the use of an additional reservoir to confine the electrolyte inside the transistor active zone. This planar structure with an integrated gate allows for wafer-scale fabrication of high-performance graphene EGFETs, with carrier mobility up to 1800 cm2 V−1 s−1. As a proof-of principle, a chemical sensor was achieved. It is shown that the sensor can discriminate between saline solutions of different concentrations. The proposed architecture will facilitate the mass production of graphene sensors, materializing the potential of previous achievements in fundamental and applied graphene research.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>26830656</pmid><doi>10.1088/0953-8984/28/8/085302</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2016-03, Vol.28 (8), p.085302-085302 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pubmed_primary_26830656 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Architecture chemical sensor Devices Electrodes Field effect transistors field-effect transistor gate capacitance Gates Graphene Mass production photolithography Semiconductor devices |
title | Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20field-effect%20transistor%20array%20with%20integrated%20electrolytic%20gates%20scaled%20to%20200%20mm&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Vieira,%20N%20C%20S&rft.date=2016-03-02&rft.volume=28&rft.issue=8&rft.spage=085302&rft.epage=085302&rft.pages=085302-085302&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/28/8/085302&rft_dat=%3Cproquest_pubme%3E1764138212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764138212&rft_id=info:pmid/26830656&rfr_iscdi=true |