Silicon monoxide - a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals
While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarka...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2016-02, Vol.8 (6), p.3678-3684 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3684 |
---|---|
container_issue | 6 |
container_start_page | 3678 |
container_title | Nanoscale |
container_volume | 8 |
creator | Sun, Wei Qian, Chenxi Cui, Xiao Sherri Wang, Liwei Wei, Muan Casillas, Gilberto Helmy, Amr S Ozin, Geoffrey A |
description | While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarkable effects observed in the diffraction, microscopy and spectroscopy of SiO powder upon thermal processing in the temperature range 850-1100 °C. Quantum confinement effects and structural changes of the material related to the size of the silicon nanocrystals nucleated and grown in this way were established by Photoluminescence (PL), Raman, FTIR and UV-Visible spectroscopy, PXRD and STEM, pinpointing that the most significant disproportionation transformations happened in the temperature range between 900 and 950 °C. With this know-how a high yield synthesis was developed that produced polydispersions of decyl-capped, hexane-soluble silicon nanocrystals predominantly with near infrared (NIR) PL. Using size-selective precipitation, these polydispersions were separated into monodisperse fractions, which allowed their PL absolute quantum yield (AQY) to be studied as a function of silicon nanocrystal size. This investigation yielded volcano-shaped plots for the AQY confirming the most efficient PL wavelength for ncSi to be located at around 820-830 nm, which corresponded to a size of 3.5-4.0 nm. This work provides opportunities for applications of size-selected near infrared emitting silicon nanocrystals in biomedical imaging and photothermal therapy.
The in-depth study of a convenient synthesis of NIR-emitting ncSi, requiring only thermal processing of commercial SiO. The size separation enabled the study of quantum size effects, pinpointing the most efficient PL wavelength. |
doi_str_mv | 10.1039/c5nr09128d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26812126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762964556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-db0f8ab77f5f478d46470939b913feda01fc2dcde088ee62bab6c0691b7dade93</originalsourceid><addsrcrecordid>eNqFkUtrGzEUhUVJqB23m-5TtAyBSfUazcwyOE8wCfSxHjTSlasyIznSOMSr_vWqtuMss7g6QvfTuVwOQl8ouaCEN9906SNpKKvNBzRlRJCC84odHe5STNBJSn8IkQ2X_COaMFlTRpmcor8_XO908HgIPrw4A7jACueHZ_AO_IhXEfQ6phCxzdWruASctOrzufHjb0gu4WCxBxWx8zaqCAbD4MbR-eXW1bi0gpjyh_0or3zQcZNG1adP6Nhmgc97naFfN9c_53fF4vH2fn65KLSoy7EwHbG16qrKllZUtRFSVKThTddQbsEoQq1mRhsgdQ0gWac6qfO6tKuMMtDwGTrb-a5ieFpDGtvBJQ19rzyEdWppTSWhFRXifbSSrJGiLGVGz3eojiGlCLZdRTeouGkpaf9n087Lh-_bbK4y_HXvu-4GMAf0NYwMnO6AmPSh-xYu_wfgx5cI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762964556</pqid></control><display><type>article</type><title>Silicon monoxide - a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Sun, Wei ; Qian, Chenxi ; Cui, Xiao Sherri ; Wang, Liwei ; Wei, Muan ; Casillas, Gilberto ; Helmy, Amr S ; Ozin, Geoffrey A</creator><creatorcontrib>Sun, Wei ; Qian, Chenxi ; Cui, Xiao Sherri ; Wang, Liwei ; Wei, Muan ; Casillas, Gilberto ; Helmy, Amr S ; Ozin, Geoffrey A</creatorcontrib><description>While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarkable effects observed in the diffraction, microscopy and spectroscopy of SiO powder upon thermal processing in the temperature range 850-1100 °C. Quantum confinement effects and structural changes of the material related to the size of the silicon nanocrystals nucleated and grown in this way were established by Photoluminescence (PL), Raman, FTIR and UV-Visible spectroscopy, PXRD and STEM, pinpointing that the most significant disproportionation transformations happened in the temperature range between 900 and 950 °C. With this know-how a high yield synthesis was developed that produced polydispersions of decyl-capped, hexane-soluble silicon nanocrystals predominantly with near infrared (NIR) PL. Using size-selective precipitation, these polydispersions were separated into monodisperse fractions, which allowed their PL absolute quantum yield (AQY) to be studied as a function of silicon nanocrystal size. This investigation yielded volcano-shaped plots for the AQY confirming the most efficient PL wavelength for ncSi to be located at around 820-830 nm, which corresponded to a size of 3.5-4.0 nm. This work provides opportunities for applications of size-selected near infrared emitting silicon nanocrystals in biomedical imaging and photothermal therapy.
The in-depth study of a convenient synthesis of NIR-emitting ncSi, requiring only thermal processing of commercial SiO. The size separation enabled the study of quantum size effects, pinpointing the most efficient PL wavelength.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr09128d</identifier><identifier>PMID: 26812126</identifier><language>eng</language><publisher>England</publisher><subject>Disproportionation ; Emittance ; Nanocrystals ; Nanostructure ; Silicon ; Silicon dioxide ; Spectroscopy ; Synthesis</subject><ispartof>Nanoscale, 2016-02, Vol.8 (6), p.3678-3684</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-db0f8ab77f5f478d46470939b913feda01fc2dcde088ee62bab6c0691b7dade93</citedby><cites>FETCH-LOGICAL-c485t-db0f8ab77f5f478d46470939b913feda01fc2dcde088ee62bab6c0691b7dade93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26812126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Qian, Chenxi</creatorcontrib><creatorcontrib>Cui, Xiao Sherri</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Wei, Muan</creatorcontrib><creatorcontrib>Casillas, Gilberto</creatorcontrib><creatorcontrib>Helmy, Amr S</creatorcontrib><creatorcontrib>Ozin, Geoffrey A</creatorcontrib><title>Silicon monoxide - a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarkable effects observed in the diffraction, microscopy and spectroscopy of SiO powder upon thermal processing in the temperature range 850-1100 °C. Quantum confinement effects and structural changes of the material related to the size of the silicon nanocrystals nucleated and grown in this way were established by Photoluminescence (PL), Raman, FTIR and UV-Visible spectroscopy, PXRD and STEM, pinpointing that the most significant disproportionation transformations happened in the temperature range between 900 and 950 °C. With this know-how a high yield synthesis was developed that produced polydispersions of decyl-capped, hexane-soluble silicon nanocrystals predominantly with near infrared (NIR) PL. Using size-selective precipitation, these polydispersions were separated into monodisperse fractions, which allowed their PL absolute quantum yield (AQY) to be studied as a function of silicon nanocrystal size. This investigation yielded volcano-shaped plots for the AQY confirming the most efficient PL wavelength for ncSi to be located at around 820-830 nm, which corresponded to a size of 3.5-4.0 nm. This work provides opportunities for applications of size-selected near infrared emitting silicon nanocrystals in biomedical imaging and photothermal therapy.
The in-depth study of a convenient synthesis of NIR-emitting ncSi, requiring only thermal processing of commercial SiO. The size separation enabled the study of quantum size effects, pinpointing the most efficient PL wavelength.</description><subject>Disproportionation</subject><subject>Emittance</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Synthesis</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUtrGzEUhUVJqB23m-5TtAyBSfUazcwyOE8wCfSxHjTSlasyIznSOMSr_vWqtuMss7g6QvfTuVwOQl8ouaCEN9906SNpKKvNBzRlRJCC84odHe5STNBJSn8IkQ2X_COaMFlTRpmcor8_XO908HgIPrw4A7jACueHZ_AO_IhXEfQ6phCxzdWruASctOrzufHjb0gu4WCxBxWx8zaqCAbD4MbR-eXW1bi0gpjyh_0or3zQcZNG1adP6Nhmgc97naFfN9c_53fF4vH2fn65KLSoy7EwHbG16qrKllZUtRFSVKThTddQbsEoQq1mRhsgdQ0gWac6qfO6tKuMMtDwGTrb-a5ieFpDGtvBJQ19rzyEdWppTSWhFRXifbSSrJGiLGVGz3eojiGlCLZdRTeouGkpaf9n087Lh-_bbK4y_HXvu-4GMAf0NYwMnO6AmPSh-xYu_wfgx5cI</recordid><startdate>20160214</startdate><enddate>20160214</enddate><creator>Sun, Wei</creator><creator>Qian, Chenxi</creator><creator>Cui, Xiao Sherri</creator><creator>Wang, Liwei</creator><creator>Wei, Muan</creator><creator>Casillas, Gilberto</creator><creator>Helmy, Amr S</creator><creator>Ozin, Geoffrey A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160214</creationdate><title>Silicon monoxide - a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals</title><author>Sun, Wei ; Qian, Chenxi ; Cui, Xiao Sherri ; Wang, Liwei ; Wei, Muan ; Casillas, Gilberto ; Helmy, Amr S ; Ozin, Geoffrey A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-db0f8ab77f5f478d46470939b913feda01fc2dcde088ee62bab6c0691b7dade93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Disproportionation</topic><topic>Emittance</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Qian, Chenxi</creatorcontrib><creatorcontrib>Cui, Xiao Sherri</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Wei, Muan</creatorcontrib><creatorcontrib>Casillas, Gilberto</creatorcontrib><creatorcontrib>Helmy, Amr S</creatorcontrib><creatorcontrib>Ozin, Geoffrey A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wei</au><au>Qian, Chenxi</au><au>Cui, Xiao Sherri</au><au>Wang, Liwei</au><au>Wei, Muan</au><au>Casillas, Gilberto</au><au>Helmy, Amr S</au><au>Ozin, Geoffrey A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon monoxide - a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-02-14</date><risdate>2016</risdate><volume>8</volume><issue>6</issue><spage>3678</spage><epage>3684</epage><pages>3678-3684</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarkable effects observed in the diffraction, microscopy and spectroscopy of SiO powder upon thermal processing in the temperature range 850-1100 °C. Quantum confinement effects and structural changes of the material related to the size of the silicon nanocrystals nucleated and grown in this way were established by Photoluminescence (PL), Raman, FTIR and UV-Visible spectroscopy, PXRD and STEM, pinpointing that the most significant disproportionation transformations happened in the temperature range between 900 and 950 °C. With this know-how a high yield synthesis was developed that produced polydispersions of decyl-capped, hexane-soluble silicon nanocrystals predominantly with near infrared (NIR) PL. Using size-selective precipitation, these polydispersions were separated into monodisperse fractions, which allowed their PL absolute quantum yield (AQY) to be studied as a function of silicon nanocrystal size. This investigation yielded volcano-shaped plots for the AQY confirming the most efficient PL wavelength for ncSi to be located at around 820-830 nm, which corresponded to a size of 3.5-4.0 nm. This work provides opportunities for applications of size-selected near infrared emitting silicon nanocrystals in biomedical imaging and photothermal therapy.
The in-depth study of a convenient synthesis of NIR-emitting ncSi, requiring only thermal processing of commercial SiO. The size separation enabled the study of quantum size effects, pinpointing the most efficient PL wavelength.</abstract><cop>England</cop><pmid>26812126</pmid><doi>10.1039/c5nr09128d</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2016-02, Vol.8 (6), p.3678-3684 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_pubmed_primary_26812126 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Disproportionation Emittance Nanocrystals Nanostructure Silicon Silicon dioxide Spectroscopy Synthesis |
title | Silicon monoxide - a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20monoxide%20-%20a%20convenient%20precursor%20for%20large%20scale%20synthesis%20of%20near%20infrared%20emitting%20monodisperse%20silicon%20nanocrystals&rft.jtitle=Nanoscale&rft.au=Sun,%20Wei&rft.date=2016-02-14&rft.volume=8&rft.issue=6&rft.spage=3678&rft.epage=3684&rft.pages=3678-3684&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr09128d&rft_dat=%3Cproquest_pubme%3E1762964556%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762964556&rft_id=info:pmid/26812126&rfr_iscdi=true |