Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control

Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2016-01, Vol.283 (1823), p.20151708
Hauptverfasser: Dallmann, Chris J., Dürr, Volker, Schmitz, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1823
container_start_page 20151708
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 283
creator Dallmann, Chris J.
Dürr, Volker
Schmitz, Josef
description Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.
doi_str_mv 10.1098/rspb.2015.1708
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26791608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760880858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-886a3d4679460c08849a025c309f6fdc93905c85528367b7917210dfc731cd083</originalsourceid><addsrcrecordid>eNp1UcFu3CAURFWq7ibtNceIYy7ePGxjwyVSFKVNq5V6ac-IxXjLhgUX8Eb---BsEjWHXkDvvWHmMYPQOYEVAc6uQhw2qxIIXZEW2Ae0JHVLipLT-gQtgTdlwWpaLtBpjDsA4JTRT2hRNi0nDbAlCj-8cQknH_6OOmLjsMR90NpO-FHaB-O2uRe1Sjjog5YWdyYm43Ldj_k03kXse2z1Fu9mpmeKIfhhtDEPsXQdHnxMY9BYeZeCt5_Rx17aqL-83Gfo99e7X7f3xfrnt--3N-tCUYBUMNbIqqvzpnUDChiruYSSqgp43_Sd4hUHqhilJauadpM_1JYEul61FVEdsOoMXR95h3Gz153SWV1aMQSzl2ESXhrxfuLMH7H1B1G3nAKBTHD5QhD87E4SexOVtlY67ccoSJstZMDorLU6QlXwMQbdv8kQEHNQYg5KzEGJOaj84OLf5d7gr8lkQHUEBD9ll7wyOk1i58fgcvk_2idcsKL1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760880858</pqid></control><display><type>article</type><title>Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Dallmann, Chris J. ; Dürr, Volker ; Schmitz, Josef</creator><creatorcontrib>Dallmann, Chris J. ; Dürr, Volker ; Schmitz, Josef</creatorcontrib><description>Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2015.1708</identifier><identifier>PMID: 26791608</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biomechanical Phenomena ; Biomechanics ; Extremities - physiology ; Ground Reaction Force ; Insect ; Insecta - physiology ; Joint Torque ; Joints - physiology ; Motor Control ; Torque ; Walking ; Walking - physiology</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2016-01, Vol.283 (1823), p.20151708</ispartof><rights>2016 The Author(s)</rights><rights>2016 The Author(s).</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-886a3d4679460c08849a025c309f6fdc93905c85528367b7917210dfc731cd083</citedby><cites>FETCH-LOGICAL-c500t-886a3d4679460c08849a025c309f6fdc93905c85528367b7917210dfc731cd083</cites><orcidid>0000-0001-9239-4964 ; 0000-0003-2054-9124 ; 0000-0002-4944-920X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795010/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795010/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26791608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dallmann, Chris J.</creatorcontrib><creatorcontrib>Dürr, Volker</creatorcontrib><creatorcontrib>Schmitz, Josef</creatorcontrib><title>Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Extremities - physiology</subject><subject>Ground Reaction Force</subject><subject>Insect</subject><subject>Insecta - physiology</subject><subject>Joint Torque</subject><subject>Joints - physiology</subject><subject>Motor Control</subject><subject>Torque</subject><subject>Walking</subject><subject>Walking - physiology</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UcFu3CAURFWq7ibtNceIYy7ePGxjwyVSFKVNq5V6ac-IxXjLhgUX8Eb---BsEjWHXkDvvWHmMYPQOYEVAc6uQhw2qxIIXZEW2Ae0JHVLipLT-gQtgTdlwWpaLtBpjDsA4JTRT2hRNi0nDbAlCj-8cQknH_6OOmLjsMR90NpO-FHaB-O2uRe1Sjjog5YWdyYm43Ldj_k03kXse2z1Fu9mpmeKIfhhtDEPsXQdHnxMY9BYeZeCt5_Rx17aqL-83Gfo99e7X7f3xfrnt--3N-tCUYBUMNbIqqvzpnUDChiruYSSqgp43_Sd4hUHqhilJauadpM_1JYEul61FVEdsOoMXR95h3Gz153SWV1aMQSzl2ESXhrxfuLMH7H1B1G3nAKBTHD5QhD87E4SexOVtlY67ccoSJstZMDorLU6QlXwMQbdv8kQEHNQYg5KzEGJOaj84OLf5d7gr8lkQHUEBD9ll7wyOk1i58fgcvk_2idcsKL1</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Dallmann, Chris J.</creator><creator>Dürr, Volker</creator><creator>Schmitz, Josef</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9239-4964</orcidid><orcidid>https://orcid.org/0000-0003-2054-9124</orcidid><orcidid>https://orcid.org/0000-0002-4944-920X</orcidid></search><sort><creationdate>20160127</creationdate><title>Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control</title><author>Dallmann, Chris J. ; Dürr, Volker ; Schmitz, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-886a3d4679460c08849a025c309f6fdc93905c85528367b7917210dfc731cd083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Extremities - physiology</topic><topic>Ground Reaction Force</topic><topic>Insect</topic><topic>Insecta - physiology</topic><topic>Joint Torque</topic><topic>Joints - physiology</topic><topic>Motor Control</topic><topic>Torque</topic><topic>Walking</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dallmann, Chris J.</creatorcontrib><creatorcontrib>Dürr, Volker</creatorcontrib><creatorcontrib>Schmitz, Josef</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dallmann, Chris J.</au><au>Dürr, Volker</au><au>Schmitz, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2016-01-27</date><risdate>2016</risdate><volume>283</volume><issue>1823</issue><spage>20151708</spage><pages>20151708-</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>26791608</pmid><doi>10.1098/rspb.2015.1708</doi><orcidid>https://orcid.org/0000-0001-9239-4964</orcidid><orcidid>https://orcid.org/0000-0003-2054-9124</orcidid><orcidid>https://orcid.org/0000-0002-4944-920X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2016-01, Vol.283 (1823), p.20151708
issn 0962-8452
1471-2954
language eng
recordid cdi_pubmed_primary_26791608
source Jstor Complete Legacy; MEDLINE; PubMed Central
subjects Animals
Biomechanical Phenomena
Biomechanics
Extremities - physiology
Ground Reaction Force
Insect
Insecta - physiology
Joint Torque
Joints - physiology
Motor Control
Torque
Walking
Walking - physiology
title Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20torques%20in%20a%20freely%20walking%20insect%20reveal%20distinct%20functions%20of%20leg%20joints%20in%20propulsion%20and%20posture%20control&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Dallmann,%20Chris%20J.&rft.date=2016-01-27&rft.volume=283&rft.issue=1823&rft.spage=20151708&rft.pages=20151708-&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2015.1708&rft_dat=%3Cproquest_pubme%3E1760880858%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760880858&rft_id=info:pmid/26791608&rfr_iscdi=true