Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control
Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2016-01, Vol.283 (1823), p.20151708 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1823 |
container_start_page | 20151708 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 283 |
creator | Dallmann, Chris J. Dürr, Volker Schmitz, Josef |
description | Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. |
doi_str_mv | 10.1098/rspb.2015.1708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26791608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760880858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-886a3d4679460c08849a025c309f6fdc93905c85528367b7917210dfc731cd083</originalsourceid><addsrcrecordid>eNp1UcFu3CAURFWq7ibtNceIYy7ePGxjwyVSFKVNq5V6ac-IxXjLhgUX8Eb---BsEjWHXkDvvWHmMYPQOYEVAc6uQhw2qxIIXZEW2Ae0JHVLipLT-gQtgTdlwWpaLtBpjDsA4JTRT2hRNi0nDbAlCj-8cQknH_6OOmLjsMR90NpO-FHaB-O2uRe1Sjjog5YWdyYm43Ldj_k03kXse2z1Fu9mpmeKIfhhtDEPsXQdHnxMY9BYeZeCt5_Rx17aqL-83Gfo99e7X7f3xfrnt--3N-tCUYBUMNbIqqvzpnUDChiruYSSqgp43_Sd4hUHqhilJauadpM_1JYEul61FVEdsOoMXR95h3Gz153SWV1aMQSzl2ESXhrxfuLMH7H1B1G3nAKBTHD5QhD87E4SexOVtlY67ccoSJstZMDorLU6QlXwMQbdv8kQEHNQYg5KzEGJOaj84OLf5d7gr8lkQHUEBD9ll7wyOk1i58fgcvk_2idcsKL1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760880858</pqid></control><display><type>article</type><title>Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Dallmann, Chris J. ; Dürr, Volker ; Schmitz, Josef</creator><creatorcontrib>Dallmann, Chris J. ; Dürr, Volker ; Schmitz, Josef</creatorcontrib><description>Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2015.1708</identifier><identifier>PMID: 26791608</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biomechanical Phenomena ; Biomechanics ; Extremities - physiology ; Ground Reaction Force ; Insect ; Insecta - physiology ; Joint Torque ; Joints - physiology ; Motor Control ; Torque ; Walking ; Walking - physiology</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2016-01, Vol.283 (1823), p.20151708</ispartof><rights>2016 The Author(s)</rights><rights>2016 The Author(s).</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-886a3d4679460c08849a025c309f6fdc93905c85528367b7917210dfc731cd083</citedby><cites>FETCH-LOGICAL-c500t-886a3d4679460c08849a025c309f6fdc93905c85528367b7917210dfc731cd083</cites><orcidid>0000-0001-9239-4964 ; 0000-0003-2054-9124 ; 0000-0002-4944-920X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795010/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795010/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26791608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dallmann, Chris J.</creatorcontrib><creatorcontrib>Dürr, Volker</creatorcontrib><creatorcontrib>Schmitz, Josef</creatorcontrib><title>Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Extremities - physiology</subject><subject>Ground Reaction Force</subject><subject>Insect</subject><subject>Insecta - physiology</subject><subject>Joint Torque</subject><subject>Joints - physiology</subject><subject>Motor Control</subject><subject>Torque</subject><subject>Walking</subject><subject>Walking - physiology</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UcFu3CAURFWq7ibtNceIYy7ePGxjwyVSFKVNq5V6ac-IxXjLhgUX8Eb---BsEjWHXkDvvWHmMYPQOYEVAc6uQhw2qxIIXZEW2Ae0JHVLipLT-gQtgTdlwWpaLtBpjDsA4JTRT2hRNi0nDbAlCj-8cQknH_6OOmLjsMR90NpO-FHaB-O2uRe1Sjjog5YWdyYm43Ldj_k03kXse2z1Fu9mpmeKIfhhtDEPsXQdHnxMY9BYeZeCt5_Rx17aqL-83Gfo99e7X7f3xfrnt--3N-tCUYBUMNbIqqvzpnUDChiruYSSqgp43_Sd4hUHqhilJauadpM_1JYEul61FVEdsOoMXR95h3Gz153SWV1aMQSzl2ESXhrxfuLMH7H1B1G3nAKBTHD5QhD87E4SexOVtlY67ccoSJstZMDorLU6QlXwMQbdv8kQEHNQYg5KzEGJOaj84OLf5d7gr8lkQHUEBD9ll7wyOk1i58fgcvk_2idcsKL1</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Dallmann, Chris J.</creator><creator>Dürr, Volker</creator><creator>Schmitz, Josef</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9239-4964</orcidid><orcidid>https://orcid.org/0000-0003-2054-9124</orcidid><orcidid>https://orcid.org/0000-0002-4944-920X</orcidid></search><sort><creationdate>20160127</creationdate><title>Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control</title><author>Dallmann, Chris J. ; Dürr, Volker ; Schmitz, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-886a3d4679460c08849a025c309f6fdc93905c85528367b7917210dfc731cd083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Extremities - physiology</topic><topic>Ground Reaction Force</topic><topic>Insect</topic><topic>Insecta - physiology</topic><topic>Joint Torque</topic><topic>Joints - physiology</topic><topic>Motor Control</topic><topic>Torque</topic><topic>Walking</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dallmann, Chris J.</creatorcontrib><creatorcontrib>Dürr, Volker</creatorcontrib><creatorcontrib>Schmitz, Josef</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dallmann, Chris J.</au><au>Dürr, Volker</au><au>Schmitz, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2016-01-27</date><risdate>2016</risdate><volume>283</volume><issue>1823</issue><spage>20151708</spage><pages>20151708-</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>26791608</pmid><doi>10.1098/rspb.2015.1708</doi><orcidid>https://orcid.org/0000-0001-9239-4964</orcidid><orcidid>https://orcid.org/0000-0003-2054-9124</orcidid><orcidid>https://orcid.org/0000-0002-4944-920X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2016-01, Vol.283 (1823), p.20151708 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_pubmed_primary_26791608 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central |
subjects | Animals Biomechanical Phenomena Biomechanics Extremities - physiology Ground Reaction Force Insect Insecta - physiology Joint Torque Joints - physiology Motor Control Torque Walking Walking - physiology |
title | Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20torques%20in%20a%20freely%20walking%20insect%20reveal%20distinct%20functions%20of%20leg%20joints%20in%20propulsion%20and%20posture%20control&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Dallmann,%20Chris%20J.&rft.date=2016-01-27&rft.volume=283&rft.issue=1823&rft.spage=20151708&rft.pages=20151708-&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2015.1708&rft_dat=%3Cproquest_pubme%3E1760880858%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760880858&rft_id=info:pmid/26791608&rfr_iscdi=true |