Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders

Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2016-01, Vol.18 (4), p.2818
Hauptverfasser: Guo, Meilan, Gao, Yun, Shao, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 2818
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator Guo, Meilan
Gao, Yun
Shao, G
description Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.
doi_str_mv 10.1039/c5cp05318h
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_26728111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26728111</sourcerecordid><originalsourceid>FETCH-LOGICAL-g215t-4f9cafdca6556816929c206e0ef7997fd64593233c323c3ae4588181c07c44f63</originalsourceid><addsrcrecordid>eNo1j8tKAzEYRoMgtlY3PoDkBUbz5zbJUoo3qHRTN25KzGTayEwSkkidt9eibs7H2XxwELoCcgOE6VsrbCKCgdqfoDlwyRpNFJ-h81I-CCEggJ2hGZUtVQAwR2_LOKbBfeEuJh922O7d6EvNE46Ho9eIXwL2wcacYjbVx6PhYEK0eSrVDIMPDptgqikOb_ya4hQPncvlAp32Ziju8m8X6PXhfrN8albrx-fl3arZURC14b22pu-skUJIBVJTbSmRjri-1brtO8mFZpQx-wPLjONCKVBgSWs57yVboOvf3_T5Prpum7IfTZ62_5HsGzvKUhc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Guo, Meilan ; Gao, Yun ; Shao, G</creator><creatorcontrib>Guo, Meilan ; Gao, Yun ; Shao, G</creatorcontrib><description>Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.</description><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp05318h</identifier><identifier>PMID: 26728111</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2016-01, Vol.18 (4), p.2818</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26728111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Meilan</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Shao, G</creatorcontrib><title>Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.</description><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1j8tKAzEYRoMgtlY3PoDkBUbz5zbJUoo3qHRTN25KzGTayEwSkkidt9eibs7H2XxwELoCcgOE6VsrbCKCgdqfoDlwyRpNFJ-h81I-CCEggJ2hGZUtVQAwR2_LOKbBfeEuJh922O7d6EvNE46Ho9eIXwL2wcacYjbVx6PhYEK0eSrVDIMPDptgqikOb_ya4hQPncvlAp32Ziju8m8X6PXhfrN8albrx-fl3arZURC14b22pu-skUJIBVJTbSmRjri-1brtO8mFZpQx-wPLjONCKVBgSWs57yVboOvf3_T5Prpum7IfTZ62_5HsGzvKUhc</recordid><startdate>20160128</startdate><enddate>20160128</enddate><creator>Guo, Meilan</creator><creator>Gao, Yun</creator><creator>Shao, G</creator><scope>NPM</scope></search><sort><creationdate>20160128</creationdate><title>Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders</title><author>Guo, Meilan ; Gao, Yun ; Shao, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g215t-4f9cafdca6556816929c206e0ef7997fd64593233c323c3ae4588181c07c44f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Meilan</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Shao, G</creatorcontrib><collection>PubMed</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Meilan</au><au>Gao, Yun</au><au>Shao, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-01-28</date><risdate>2016</risdate><volume>18</volume><issue>4</issue><spage>2818</spage><pages>2818-</pages><eissn>1463-9084</eissn><abstract>Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.</abstract><cop>England</cop><pmid>26728111</pmid><doi>10.1039/c5cp05318h</doi></addata></record>
fulltext fulltext
identifier EISSN: 1463-9084
ispartof Physical chemistry chemical physics : PCCP, 2016-01, Vol.18 (4), p.2818
issn 1463-9084
language eng
recordid cdi_pubmed_primary_26728111
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20doping%20chemistry%20owing%20to%20Mn%20incorporation%20in%20nanocrystalline%20anatase%20TiO2%20powders&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Guo,%20Meilan&rft.date=2016-01-28&rft.volume=18&rft.issue=4&rft.spage=2818&rft.pages=2818-&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp05318h&rft_dat=%3Cpubmed%3E26728111%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26728111&rfr_iscdi=true