A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach

The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2016-01, Vol.61 (1), p.183-214
Hauptverfasser: Russo, G, Attili, A, Battistoni, G, Bertrand, D, Bourhaleb, F, Cappucci, F, Ciocca, M, Mairani, A, Milian, F M, Molinelli, S, Morone, M C, Muraro, S, Orts, T, Patera, V, Sala, P, Schmitt, E, Vivaldo, G, Marchetto, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 1
container_start_page 183
container_title Physics in medicine & biology
container_volume 61
creator Russo, G
Attili, A
Battistoni, G
Bertrand, D
Bourhaleb, F
Cappucci, F
Ciocca, M
Mairani, A
Milian, F M
Molinelli, S
Morone, M C
Muraro, S
Orts, T
Patera, V
Sala, P
Schmitt, E
Vivaldo, G
Marchetto, F
description The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.
doi_str_mv 10.1088/0031-9155/61/1/183
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26630246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1750435337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-dbed0c4e253f804d5bf04cd635fe63e48d9702b7836cca8f9c5f6a539becf2713</originalsourceid><addsrcrecordid>eNp9kc1u3CAQgFHVqtn8vEAPFcdenAVjMNtbFCVppZV6ac8Iw7DLCoMDdqV9krxu7N00x2oOiOGbb8QMQl8ouaVEyjUhjFYbyvla0PUckn1AK8oErQQX5CNavQMX6LKUAyGUyrr5jC5qIRipG7FCL3c4pr8QsA67lP2477FLGY97wEYHMwU9-hRxcnjYH4ufc1hHizufQtqdrj5nbf0Ze550HP3ooWAfcTE6RrB4eelA94s16-H4_aRfMgFGXKYB8pCKPxn0MOSkzf4afXI6FLh5O6_Qn8eH3_c_qu2vp5_3d9vKNLweK9uBJaaBmjMnSWN550hjrGDcgWDQSLtpSd21kgljtHQbw53QnG06MK5uKbtC387eue3zBGVUvS8GQtAR0lQUbTlpGGesndH6jJqcSsng1JB9r_NRUaKWhahl3mqZtxJUzSHZXPT1zT91Pdj3kn8bmIHbM-DToA5pynH-7v-Mr5Iwl-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750435337</pqid></control><display><type>article</type><title>A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Russo, G ; Attili, A ; Battistoni, G ; Bertrand, D ; Bourhaleb, F ; Cappucci, F ; Ciocca, M ; Mairani, A ; Milian, F M ; Molinelli, S ; Morone, M C ; Muraro, S ; Orts, T ; Patera, V ; Sala, P ; Schmitt, E ; Vivaldo, G ; Marchetto, F</creator><creatorcontrib>Russo, G ; Attili, A ; Battistoni, G ; Bertrand, D ; Bourhaleb, F ; Cappucci, F ; Ciocca, M ; Mairani, A ; Milian, F M ; Molinelli, S ; Morone, M C ; Muraro, S ; Orts, T ; Patera, V ; Sala, P ; Schmitt, E ; Vivaldo, G ; Marchetto, F</creatorcontrib><description>The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/61/1/183</identifier><identifier>PMID: 26630246</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; beam model ; Humans ; ion therapy ; local effect model ; microdosimetric kinetic model ; Monte Carlo ; Proton Therapy - methods ; Radiotherapy Planning, Computer-Assisted - methods ; Relative Biological Effectiveness ; treatment planning</subject><ispartof>Physics in medicine &amp; biology, 2016-01, Vol.61 (1), p.183-214</ispartof><rights>2016 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-dbed0c4e253f804d5bf04cd635fe63e48d9702b7836cca8f9c5f6a539becf2713</citedby><cites>FETCH-LOGICAL-c452t-dbed0c4e253f804d5bf04cd635fe63e48d9702b7836cca8f9c5f6a539becf2713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/61/1/183/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26630246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russo, G</creatorcontrib><creatorcontrib>Attili, A</creatorcontrib><creatorcontrib>Battistoni, G</creatorcontrib><creatorcontrib>Bertrand, D</creatorcontrib><creatorcontrib>Bourhaleb, F</creatorcontrib><creatorcontrib>Cappucci, F</creatorcontrib><creatorcontrib>Ciocca, M</creatorcontrib><creatorcontrib>Mairani, A</creatorcontrib><creatorcontrib>Milian, F M</creatorcontrib><creatorcontrib>Molinelli, S</creatorcontrib><creatorcontrib>Morone, M C</creatorcontrib><creatorcontrib>Muraro, S</creatorcontrib><creatorcontrib>Orts, T</creatorcontrib><creatorcontrib>Patera, V</creatorcontrib><creatorcontrib>Sala, P</creatorcontrib><creatorcontrib>Schmitt, E</creatorcontrib><creatorcontrib>Vivaldo, G</creatorcontrib><creatorcontrib>Marchetto, F</creatorcontrib><title>A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.</description><subject>Algorithms</subject><subject>beam model</subject><subject>Humans</subject><subject>ion therapy</subject><subject>local effect model</subject><subject>microdosimetric kinetic model</subject><subject>Monte Carlo</subject><subject>Proton Therapy - methods</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Relative Biological Effectiveness</subject><subject>treatment planning</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u3CAQgFHVqtn8vEAPFcdenAVjMNtbFCVppZV6ac8Iw7DLCoMDdqV9krxu7N00x2oOiOGbb8QMQl8ouaVEyjUhjFYbyvla0PUckn1AK8oErQQX5CNavQMX6LKUAyGUyrr5jC5qIRipG7FCL3c4pr8QsA67lP2477FLGY97wEYHMwU9-hRxcnjYH4ufc1hHizufQtqdrj5nbf0Ze550HP3ooWAfcTE6RrB4eelA94s16-H4_aRfMgFGXKYB8pCKPxn0MOSkzf4afXI6FLh5O6_Qn8eH3_c_qu2vp5_3d9vKNLweK9uBJaaBmjMnSWN550hjrGDcgWDQSLtpSd21kgljtHQbw53QnG06MK5uKbtC387eue3zBGVUvS8GQtAR0lQUbTlpGGesndH6jJqcSsng1JB9r_NRUaKWhahl3mqZtxJUzSHZXPT1zT91Pdj3kn8bmIHbM-DToA5pynH-7v-Mr5Iwl-w</recordid><startdate>20160107</startdate><enddate>20160107</enddate><creator>Russo, G</creator><creator>Attili, A</creator><creator>Battistoni, G</creator><creator>Bertrand, D</creator><creator>Bourhaleb, F</creator><creator>Cappucci, F</creator><creator>Ciocca, M</creator><creator>Mairani, A</creator><creator>Milian, F M</creator><creator>Molinelli, S</creator><creator>Morone, M C</creator><creator>Muraro, S</creator><creator>Orts, T</creator><creator>Patera, V</creator><creator>Sala, P</creator><creator>Schmitt, E</creator><creator>Vivaldo, G</creator><creator>Marchetto, F</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160107</creationdate><title>A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach</title><author>Russo, G ; Attili, A ; Battistoni, G ; Bertrand, D ; Bourhaleb, F ; Cappucci, F ; Ciocca, M ; Mairani, A ; Milian, F M ; Molinelli, S ; Morone, M C ; Muraro, S ; Orts, T ; Patera, V ; Sala, P ; Schmitt, E ; Vivaldo, G ; Marchetto, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-dbed0c4e253f804d5bf04cd635fe63e48d9702b7836cca8f9c5f6a539becf2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>beam model</topic><topic>Humans</topic><topic>ion therapy</topic><topic>local effect model</topic><topic>microdosimetric kinetic model</topic><topic>Monte Carlo</topic><topic>Proton Therapy - methods</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Relative Biological Effectiveness</topic><topic>treatment planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, G</creatorcontrib><creatorcontrib>Attili, A</creatorcontrib><creatorcontrib>Battistoni, G</creatorcontrib><creatorcontrib>Bertrand, D</creatorcontrib><creatorcontrib>Bourhaleb, F</creatorcontrib><creatorcontrib>Cappucci, F</creatorcontrib><creatorcontrib>Ciocca, M</creatorcontrib><creatorcontrib>Mairani, A</creatorcontrib><creatorcontrib>Milian, F M</creatorcontrib><creatorcontrib>Molinelli, S</creatorcontrib><creatorcontrib>Morone, M C</creatorcontrib><creatorcontrib>Muraro, S</creatorcontrib><creatorcontrib>Orts, T</creatorcontrib><creatorcontrib>Patera, V</creatorcontrib><creatorcontrib>Sala, P</creatorcontrib><creatorcontrib>Schmitt, E</creatorcontrib><creatorcontrib>Vivaldo, G</creatorcontrib><creatorcontrib>Marchetto, F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russo, G</au><au>Attili, A</au><au>Battistoni, G</au><au>Bertrand, D</au><au>Bourhaleb, F</au><au>Cappucci, F</au><au>Ciocca, M</au><au>Mairani, A</au><au>Milian, F M</au><au>Molinelli, S</au><au>Morone, M C</au><au>Muraro, S</au><au>Orts, T</au><au>Patera, V</au><au>Sala, P</au><au>Schmitt, E</au><au>Vivaldo, G</au><au>Marchetto, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2016-01-07</date><risdate>2016</risdate><volume>61</volume><issue>1</issue><spage>183</spage><epage>214</epage><pages>183-214</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>26630246</pmid><doi>10.1088/0031-9155/61/1/183</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2016-01, Vol.61 (1), p.183-214
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_26630246
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
beam model
Humans
ion therapy
local effect model
microdosimetric kinetic model
Monte Carlo
Proton Therapy - methods
Radiotherapy Planning, Computer-Assisted - methods
Relative Biological Effectiveness
treatment planning
title A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20algorithm%20for%20the%20calculation%20of%20physical%20and%20biological%20irradiation%20quantities%20in%20scanned%20ion%20beam%20therapy:%20the%20beamlet%20superposition%20approach&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Russo,%20G&rft.date=2016-01-07&rft.volume=61&rft.issue=1&rft.spage=183&rft.epage=214&rft.pages=183-214&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/61/1/183&rft_dat=%3Cproquest_pubme%3E1750435337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750435337&rft_id=info:pmid/26630246&rfr_iscdi=true