Capillary-induced giant elastic dipoles in thin nematic films

Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-12, Vol.112 (48), p.14771-14776
Hauptverfasser: Jeridi, Haifa, Gharbi, Mohamed A., Othman, Tahar, Blanc, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14776
container_issue 48
container_start_page 14771
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Jeridi, Haifa
Gharbi, Mohamed A.
Othman, Tahar
Blanc, Christophe
description Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby defects. Here, we report, for the first time to our knowledge, the existence of giant elastic dipoles arising from particles dispersed in free nematic liquid crystal films. We discuss the role of capillarity and film thickness on the dimensions of the dipoles and explain their main features with a simple 2D model. Coupling of capillarity with nematic elasticity could offer ways to tune finely the spatial organization of complex colloidal systems.
doi_str_mv 10.1073/pnas.1508865112
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26554001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465926</jstor_id><sourcerecordid>26465926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-e0d682db9fa7822d22c2aeb16e82ca2e4676ed1f1f8d173ad7a8d9c2f8fbf2e13</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUiQsc0nom8UcOIFUraJFW6qWcLa8_ul4lToiTSvz3ONplaXuxpfFv3jzPI-Q90Augorocok4XwKiUnAHgC7IC2kDJ64a-JCtKUZSyxvqMvElpTyltmKSvyRlyxmpKYUW-rvUQ2laPf8oQ7WycLe6DjlPhWp2mYAobhr51qQixmHb5iK7TS92HtktvySuv2-TeHe9z8uvH97v1Tbm5vf65vtqUhlGcSkctl2i3jddCIlpEg9ptgTuJRqOrueDOggcvLYhKW6GlbQx66bceHVTn5NtBd5i3nbPGxWnUrRrG0GXnqtdBPX2JYafu-weVlVFilQW-HAR2z9purjZqqVHAijPRPCzDPh-Hjf3v2aVJdSEZl5cUXT8nlR1KiSBhQT89Q_f9PMa8ikzVkjVMIGbq8kCZsU9pdP7kAKhaYlRLjOp_jLnj4-P_nvh_uWWgOAJL50kOUNVSQS3Egnw4IPs09eMjiZqzBnn1Fw6TrLs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748595722</pqid></control><display><type>article</type><title>Capillary-induced giant elastic dipoles in thin nematic films</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jeridi, Haifa ; Gharbi, Mohamed A. ; Othman, Tahar ; Blanc, Christophe</creator><creatorcontrib>Jeridi, Haifa ; Gharbi, Mohamed A. ; Othman, Tahar ; Blanc, Christophe</creatorcontrib><description>Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby defects. Here, we report, for the first time to our knowledge, the existence of giant elastic dipoles arising from particles dispersed in free nematic liquid crystal films. We discuss the role of capillarity and film thickness on the dimensions of the dipoles and explain their main features with a simple 2D model. Coupling of capillarity with nematic elasticity could offer ways to tune finely the spatial organization of complex colloidal systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1508865112</identifier><identifier>PMID: 26554001</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Capillarity ; Condensed Matter ; Crystals ; Fluids ; Materials elasticity ; Matrix ; Physical Sciences ; Physics ; Soft Condensed Matter ; Thin films</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (48), p.14771-14776</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 1, 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-e0d682db9fa7822d22c2aeb16e82ca2e4676ed1f1f8d173ad7a8d9c2f8fbf2e13</citedby><cites>FETCH-LOGICAL-c502t-e0d682db9fa7822d22c2aeb16e82ca2e4676ed1f1f8d173ad7a8d9c2f8fbf2e13</cites><orcidid>0000-0002-8470-478X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465926$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465926$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26554001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01236579$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeridi, Haifa</creatorcontrib><creatorcontrib>Gharbi, Mohamed A.</creatorcontrib><creatorcontrib>Othman, Tahar</creatorcontrib><creatorcontrib>Blanc, Christophe</creatorcontrib><title>Capillary-induced giant elastic dipoles in thin nematic films</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby defects. Here, we report, for the first time to our knowledge, the existence of giant elastic dipoles arising from particles dispersed in free nematic liquid crystal films. We discuss the role of capillarity and film thickness on the dimensions of the dipoles and explain their main features with a simple 2D model. Coupling of capillarity with nematic elasticity could offer ways to tune finely the spatial organization of complex colloidal systems.</description><subject>Capillarity</subject><subject>Condensed Matter</subject><subject>Crystals</subject><subject>Fluids</subject><subject>Materials elasticity</subject><subject>Matrix</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Thin films</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAkUiQsc0nom8UcOIFUraJFW6qWcLa8_ul4lToiTSvz3ONplaXuxpfFv3jzPI-Q90Augorocok4XwKiUnAHgC7IC2kDJ64a-JCtKUZSyxvqMvElpTyltmKSvyRlyxmpKYUW-rvUQ2laPf8oQ7WycLe6DjlPhWp2mYAobhr51qQixmHb5iK7TS92HtktvySuv2-TeHe9z8uvH97v1Tbm5vf65vtqUhlGcSkctl2i3jddCIlpEg9ptgTuJRqOrueDOggcvLYhKW6GlbQx66bceHVTn5NtBd5i3nbPGxWnUrRrG0GXnqtdBPX2JYafu-weVlVFilQW-HAR2z9purjZqqVHAijPRPCzDPh-Hjf3v2aVJdSEZl5cUXT8nlR1KiSBhQT89Q_f9PMa8ikzVkjVMIGbq8kCZsU9pdP7kAKhaYlRLjOp_jLnj4-P_nvh_uWWgOAJL50kOUNVSQS3Egnw4IPs09eMjiZqzBnn1Fw6TrLs</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Jeridi, Haifa</creator><creator>Gharbi, Mohamed A.</creator><creator>Othman, Tahar</creator><creator>Blanc, Christophe</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8470-478X</orcidid></search><sort><creationdate>20151201</creationdate><title>Capillary-induced giant elastic dipoles in thin nematic films</title><author>Jeridi, Haifa ; Gharbi, Mohamed A. ; Othman, Tahar ; Blanc, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-e0d682db9fa7822d22c2aeb16e82ca2e4676ed1f1f8d173ad7a8d9c2f8fbf2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Capillarity</topic><topic>Condensed Matter</topic><topic>Crystals</topic><topic>Fluids</topic><topic>Materials elasticity</topic><topic>Matrix</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeridi, Haifa</creatorcontrib><creatorcontrib>Gharbi, Mohamed A.</creatorcontrib><creatorcontrib>Othman, Tahar</creatorcontrib><creatorcontrib>Blanc, Christophe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeridi, Haifa</au><au>Gharbi, Mohamed A.</au><au>Othman, Tahar</au><au>Blanc, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary-induced giant elastic dipoles in thin nematic films</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>112</volume><issue>48</issue><spage>14771</spage><epage>14776</epage><pages>14771-14776</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby defects. Here, we report, for the first time to our knowledge, the existence of giant elastic dipoles arising from particles dispersed in free nematic liquid crystal films. We discuss the role of capillarity and film thickness on the dimensions of the dipoles and explain their main features with a simple 2D model. Coupling of capillarity with nematic elasticity could offer ways to tune finely the spatial organization of complex colloidal systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26554001</pmid><doi>10.1073/pnas.1508865112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8470-478X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (48), p.14771-14776
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_26554001
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Capillarity
Condensed Matter
Crystals
Fluids
Materials elasticity
Matrix
Physical Sciences
Physics
Soft Condensed Matter
Thin films
title Capillary-induced giant elastic dipoles in thin nematic films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary-induced%20giant%20elastic%20dipoles%20in%20thin%20nematic%20films&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jeridi,%20Haifa&rft.date=2015-12-01&rft.volume=112&rft.issue=48&rft.spage=14771&rft.epage=14776&rft.pages=14771-14776&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1508865112&rft_dat=%3Cjstor_pubme%3E26465926%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1748595722&rft_id=info:pmid/26554001&rft_jstor_id=26465926&rfr_iscdi=true