Dynamic allostery governs cyclophilin A–HIV capsid interplay
Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactionswith the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-11, Vol.112 (47), p.14617-14622 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14622 |
---|---|
container_issue | 47 |
container_start_page | 14617 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Lu, Manman Hou, Guangjin Zhang, Huilan Suiter, Christopher L. Ahn, Jinwoo Byeon, In-Ja L. Perilla, Juan R. Langmead, Christopher J. Hung, Ivan Gor’kov, Peter L. Gan, Zhehong Brey, William Aiken, Christopher Zhang, Peijun Schulten, Klaus Gronenborn, Angela M. Polenova, Tatyana |
description | Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactionswith the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone ¹H-15N and ¹H-13C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1’s escape from CypA dependence. |
doi_str_mv | 10.1073/pnas.1516920112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26553990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465867</jstor_id><sourcerecordid>26465867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-802b03a6ee7ffa79e2625131fadcd172cdd1e685c7c86ee092b1c433580000613</originalsourceid><addsrcrecordid>eNqNkb1uFDEUhS1ERDYLNRVoJJo0k_hvrsdNpCj8JFKkNEBreT0e4pXXHuxZpOl4B96QJ8GjXZaQKrdxcb977rk-CL0m-Ixgwc6HoPMZaQhIigmhz9CCYElq4BI_RwuMqahbTvkxOsl5jTGWTYtfoGMKTcOkxAt08X4KeuNMpb2PebRpqr7FHzaFXJnJ-DjcO-9Cdfn756_rm6-V0UN2XeVCIQevp5foqNc-21f7d4m-fPzw-eq6vr37dHN1eVubBsRYt5iuMNNgreh7LaSlQBvCSK870xFBTdcRC21jhGkLhCVdEcMZK25LAWFLdLHTHbarje2MDWPSXg3JbXSaVNRO_d8J7l6VQxQH4IzjInC6F0jx-9bmUW1cNtZ7HWzcZkUEUCZANvAElAEUY3RG3z1C13GbQvmJmZJYlu28UOc7yqSYc7L9wTfBao5RzTGqfzGWibcPzz3wf3MrQLUH5smDHKGKC0U4lO1L9GaHrPMY0wMJDk0Lgv0B0F6tCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1739096644</pqid></control><display><type>article</type><title>Dynamic allostery governs cyclophilin A–HIV capsid interplay</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Manman ; Hou, Guangjin ; Zhang, Huilan ; Suiter, Christopher L. ; Ahn, Jinwoo ; Byeon, In-Ja L. ; Perilla, Juan R. ; Langmead, Christopher J. ; Hung, Ivan ; Gor’kov, Peter L. ; Gan, Zhehong ; Brey, William ; Aiken, Christopher ; Zhang, Peijun ; Schulten, Klaus ; Gronenborn, Angela M. ; Polenova, Tatyana</creator><creatorcontrib>Lu, Manman ; Hou, Guangjin ; Zhang, Huilan ; Suiter, Christopher L. ; Ahn, Jinwoo ; Byeon, In-Ja L. ; Perilla, Juan R. ; Langmead, Christopher J. ; Hung, Ivan ; Gor’kov, Peter L. ; Gan, Zhehong ; Brey, William ; Aiken, Christopher ; Zhang, Peijun ; Schulten, Klaus ; Gronenborn, Angela M. ; Polenova, Tatyana</creatorcontrib><description>Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactionswith the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone ¹H-15N and ¹H-13C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1’s escape from CypA dependence.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1516920112</identifier><identifier>PMID: 26553990</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Allosteric Regulation ; Binding sites ; Biological Sciences ; Capsid - chemistry ; Capsid - ultrastructure ; Cells ; Cyclophilin A - chemistry ; Cyclophilin A - ultrastructure ; HIV ; HIV-1 - chemistry ; HIV-1 - ultrastructure ; Human immunodeficiency virus ; Human immunodeficiency virus 1 ; Humans ; Magnetic Resonance Spectroscopy ; Molecular Dynamics Simulation ; Mutant Proteins - chemistry ; Mutation - genetics ; NMR ; Nuclear magnetic resonance ; Proteins ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (47), p.14617-14622</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 24, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-802b03a6ee7ffa79e2625131fadcd172cdd1e685c7c86ee092b1c433580000613</citedby><cites>FETCH-LOGICAL-c567t-802b03a6ee7ffa79e2625131fadcd172cdd1e685c7c86ee092b1c433580000613</cites><orcidid>0000-0003-1171-6816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465867$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465867$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26553990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Manman</creatorcontrib><creatorcontrib>Hou, Guangjin</creatorcontrib><creatorcontrib>Zhang, Huilan</creatorcontrib><creatorcontrib>Suiter, Christopher L.</creatorcontrib><creatorcontrib>Ahn, Jinwoo</creatorcontrib><creatorcontrib>Byeon, In-Ja L.</creatorcontrib><creatorcontrib>Perilla, Juan R.</creatorcontrib><creatorcontrib>Langmead, Christopher J.</creatorcontrib><creatorcontrib>Hung, Ivan</creatorcontrib><creatorcontrib>Gor’kov, Peter L.</creatorcontrib><creatorcontrib>Gan, Zhehong</creatorcontrib><creatorcontrib>Brey, William</creatorcontrib><creatorcontrib>Aiken, Christopher</creatorcontrib><creatorcontrib>Zhang, Peijun</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Gronenborn, Angela M.</creatorcontrib><creatorcontrib>Polenova, Tatyana</creatorcontrib><title>Dynamic allostery governs cyclophilin A–HIV capsid interplay</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactionswith the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone ¹H-15N and ¹H-13C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1’s escape from CypA dependence.</description><subject>Allosteric Regulation</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Capsid - chemistry</subject><subject>Capsid - ultrastructure</subject><subject>Cells</subject><subject>Cyclophilin A - chemistry</subject><subject>Cyclophilin A - ultrastructure</subject><subject>HIV</subject><subject>HIV-1 - chemistry</subject><subject>HIV-1 - ultrastructure</subject><subject>Human immunodeficiency virus</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutation - genetics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Proteins</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb1uFDEUhS1ERDYLNRVoJJo0k_hvrsdNpCj8JFKkNEBreT0e4pXXHuxZpOl4B96QJ8GjXZaQKrdxcb977rk-CL0m-Ixgwc6HoPMZaQhIigmhz9CCYElq4BI_RwuMqahbTvkxOsl5jTGWTYtfoGMKTcOkxAt08X4KeuNMpb2PebRpqr7FHzaFXJnJ-DjcO-9Cdfn756_rm6-V0UN2XeVCIQevp5foqNc-21f7d4m-fPzw-eq6vr37dHN1eVubBsRYt5iuMNNgreh7LaSlQBvCSK870xFBTdcRC21jhGkLhCVdEcMZK25LAWFLdLHTHbarje2MDWPSXg3JbXSaVNRO_d8J7l6VQxQH4IzjInC6F0jx-9bmUW1cNtZ7HWzcZkUEUCZANvAElAEUY3RG3z1C13GbQvmJmZJYlu28UOc7yqSYc7L9wTfBao5RzTGqfzGWibcPzz3wf3MrQLUH5smDHKGKC0U4lO1L9GaHrPMY0wMJDk0Lgv0B0F6tCQ</recordid><startdate>20151124</startdate><enddate>20151124</enddate><creator>Lu, Manman</creator><creator>Hou, Guangjin</creator><creator>Zhang, Huilan</creator><creator>Suiter, Christopher L.</creator><creator>Ahn, Jinwoo</creator><creator>Byeon, In-Ja L.</creator><creator>Perilla, Juan R.</creator><creator>Langmead, Christopher J.</creator><creator>Hung, Ivan</creator><creator>Gor’kov, Peter L.</creator><creator>Gan, Zhehong</creator><creator>Brey, William</creator><creator>Aiken, Christopher</creator><creator>Zhang, Peijun</creator><creator>Schulten, Klaus</creator><creator>Gronenborn, Angela M.</creator><creator>Polenova, Tatyana</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1171-6816</orcidid></search><sort><creationdate>20151124</creationdate><title>Dynamic allostery governs cyclophilin A–HIV capsid interplay</title><author>Lu, Manman ; Hou, Guangjin ; Zhang, Huilan ; Suiter, Christopher L. ; Ahn, Jinwoo ; Byeon, In-Ja L. ; Perilla, Juan R. ; Langmead, Christopher J. ; Hung, Ivan ; Gor’kov, Peter L. ; Gan, Zhehong ; Brey, William ; Aiken, Christopher ; Zhang, Peijun ; Schulten, Klaus ; Gronenborn, Angela M. ; Polenova, Tatyana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-802b03a6ee7ffa79e2625131fadcd172cdd1e685c7c86ee092b1c433580000613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allosteric Regulation</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Capsid - chemistry</topic><topic>Capsid - ultrastructure</topic><topic>Cells</topic><topic>Cyclophilin A - chemistry</topic><topic>Cyclophilin A - ultrastructure</topic><topic>HIV</topic><topic>HIV-1 - chemistry</topic><topic>HIV-1 - ultrastructure</topic><topic>Human immunodeficiency virus</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutation - genetics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Proteins</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Manman</creatorcontrib><creatorcontrib>Hou, Guangjin</creatorcontrib><creatorcontrib>Zhang, Huilan</creatorcontrib><creatorcontrib>Suiter, Christopher L.</creatorcontrib><creatorcontrib>Ahn, Jinwoo</creatorcontrib><creatorcontrib>Byeon, In-Ja L.</creatorcontrib><creatorcontrib>Perilla, Juan R.</creatorcontrib><creatorcontrib>Langmead, Christopher J.</creatorcontrib><creatorcontrib>Hung, Ivan</creatorcontrib><creatorcontrib>Gor’kov, Peter L.</creatorcontrib><creatorcontrib>Gan, Zhehong</creatorcontrib><creatorcontrib>Brey, William</creatorcontrib><creatorcontrib>Aiken, Christopher</creatorcontrib><creatorcontrib>Zhang, Peijun</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Gronenborn, Angela M.</creatorcontrib><creatorcontrib>Polenova, Tatyana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Manman</au><au>Hou, Guangjin</au><au>Zhang, Huilan</au><au>Suiter, Christopher L.</au><au>Ahn, Jinwoo</au><au>Byeon, In-Ja L.</au><au>Perilla, Juan R.</au><au>Langmead, Christopher J.</au><au>Hung, Ivan</au><au>Gor’kov, Peter L.</au><au>Gan, Zhehong</au><au>Brey, William</au><au>Aiken, Christopher</au><au>Zhang, Peijun</au><au>Schulten, Klaus</au><au>Gronenborn, Angela M.</au><au>Polenova, Tatyana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic allostery governs cyclophilin A–HIV capsid interplay</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-11-24</date><risdate>2015</risdate><volume>112</volume><issue>47</issue><spage>14617</spage><epage>14622</epage><pages>14617-14622</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactionswith the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone ¹H-15N and ¹H-13C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1’s escape from CypA dependence.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26553990</pmid><doi>10.1073/pnas.1516920112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1171-6816</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (47), p.14617-14622 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_26553990 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Allosteric Regulation Binding sites Biological Sciences Capsid - chemistry Capsid - ultrastructure Cells Cyclophilin A - chemistry Cyclophilin A - ultrastructure HIV HIV-1 - chemistry HIV-1 - ultrastructure Human immunodeficiency virus Human immunodeficiency virus 1 Humans Magnetic Resonance Spectroscopy Molecular Dynamics Simulation Mutant Proteins - chemistry Mutation - genetics NMR Nuclear magnetic resonance Proteins Time Factors |
title | Dynamic allostery governs cyclophilin A–HIV capsid interplay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20allostery%20governs%20cyclophilin%20A%E2%80%93HIV%20capsid%20interplay&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lu,%20Manman&rft.date=2015-11-24&rft.volume=112&rft.issue=47&rft.spage=14617&rft.epage=14622&rft.pages=14617-14622&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1516920112&rft_dat=%3Cjstor_pubme%3E26465867%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1739096644&rft_id=info:pmid/26553990&rft_jstor_id=26465867&rfr_iscdi=true |