MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data

Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2016-01, Vol.22 (1), p.21-30
Hauptverfasser: Jang, Sujin, Elmqvist, Niklas, Ramani, Karthik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 21
container_title IEEE transactions on visualization and computer graphics
container_volume 22
creator Jang, Sujin
Elmqvist, Niklas
Ramani, Karthik
description Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
doi_str_mv 10.1109/TVCG.2015.2468292
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_26529685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7194831</ieee_id><sourcerecordid>2174299532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-6434c3ac7c3820315602c721aa7cce816c54a8192619dde9a379e9b835f208923</originalsourceid><addsrcrecordid>eNpdkVtLwzAYhoMobh5-gAgS8MabznxJm4N3Y7opKApOb0OWZaOzS2fSIv5723V64VVOz_vykQehMyADAKKup--jyYASyAY05ZIquof6oFJISEb4frMnQiSUU95DRzGuCIE0leoQ9SjPqOIy6yP7VFZ56cdF-XWD3_NYmwIPZ7EKxrb32Pg5Hi6XwS3N9lwu8Kv7rJ2v8oZ8MVXlgo849_i-XhuPuzo8bfIfuV_iW1OZE3SwMEV0p7v1GL2N76aj--TxefIwGj4mljFSJTxlqWXGCsskJQwyTqgVFIwR1joJ3GapkaAoBzWfO2WYUE7NJMsWlEhF2TG66no3oWxGjJVe59G6ojDelXXUIBjhkqgtevkPXZV18M10moJIqVIZaynoKBvKGINb6E3I1yZ8ayC6NaBbA7o1oHcGmszFrrmerd38L_H75Q1w3gG5c-7vWTTeJAP2A0S8iJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174299532</pqid></control><display><type>article</type><title>MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data</title><source>IEEE Electronic Library (IEL)</source><creator>Jang, Sujin ; Elmqvist, Niklas ; Ramani, Karthik</creator><creatorcontrib>Jang, Sujin ; Elmqvist, Niklas ; Ramani, Karthik</creatorcontrib><description>Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2015.2468292</identifier><identifier>PMID: 26529685</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytics ; Cluster Analysis ; Clustering ; Computer Graphics ; Context ; Data analysis ; Data visualization ; expert reviews ; Flow visualization ; Human motion ; Human motion visualization ; Humans ; Image Processing, Computer-Assisted - methods ; interactive clustering ; Layout ; motion tracking data ; Movement ; Pattern analysis ; Pattern Recognition, Automated - methods ; Perception ; Researchers ; Software reviews ; Three-dimensional displays ; Tracking ; Unstructured data ; user study ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2016-01, Vol.22 (1), p.21-30</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-6434c3ac7c3820315602c721aa7cce816c54a8192619dde9a379e9b835f208923</citedby><cites>FETCH-LOGICAL-c330t-6434c3ac7c3820315602c721aa7cce816c54a8192619dde9a379e9b835f208923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7194831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7194831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26529685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Sujin</creatorcontrib><creatorcontrib>Elmqvist, Niklas</creatorcontrib><creatorcontrib>Ramani, Karthik</creatorcontrib><title>MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.</description><subject>Analytics</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computer Graphics</subject><subject>Context</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>expert reviews</subject><subject>Flow visualization</subject><subject>Human motion</subject><subject>Human motion visualization</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>interactive clustering</subject><subject>Layout</subject><subject>motion tracking data</subject><subject>Movement</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Perception</subject><subject>Researchers</subject><subject>Software reviews</subject><subject>Three-dimensional displays</subject><subject>Tracking</subject><subject>Unstructured data</subject><subject>user study</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkVtLwzAYhoMobh5-gAgS8MabznxJm4N3Y7opKApOb0OWZaOzS2fSIv5723V64VVOz_vykQehMyADAKKup--jyYASyAY05ZIquof6oFJISEb4frMnQiSUU95DRzGuCIE0leoQ9SjPqOIy6yP7VFZ56cdF-XWD3_NYmwIPZ7EKxrb32Pg5Hi6XwS3N9lwu8Kv7rJ2v8oZ8MVXlgo849_i-XhuPuzo8bfIfuV_iW1OZE3SwMEV0p7v1GL2N76aj--TxefIwGj4mljFSJTxlqWXGCsskJQwyTqgVFIwR1joJ3GapkaAoBzWfO2WYUE7NJMsWlEhF2TG66no3oWxGjJVe59G6ojDelXXUIBjhkqgtevkPXZV18M10moJIqVIZaynoKBvKGINb6E3I1yZ8ayC6NaBbA7o1oHcGmszFrrmerd38L_H75Q1w3gG5c-7vWTTeJAP2A0S8iJo</recordid><startdate>20160131</startdate><enddate>20160131</enddate><creator>Jang, Sujin</creator><creator>Elmqvist, Niklas</creator><creator>Ramani, Karthik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160131</creationdate><title>MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data</title><author>Jang, Sujin ; Elmqvist, Niklas ; Ramani, Karthik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-6434c3ac7c3820315602c721aa7cce816c54a8192619dde9a379e9b835f208923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytics</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computer Graphics</topic><topic>Context</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>expert reviews</topic><topic>Flow visualization</topic><topic>Human motion</topic><topic>Human motion visualization</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>interactive clustering</topic><topic>Layout</topic><topic>motion tracking data</topic><topic>Movement</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Perception</topic><topic>Researchers</topic><topic>Software reviews</topic><topic>Three-dimensional displays</topic><topic>Tracking</topic><topic>Unstructured data</topic><topic>user study</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Sujin</creatorcontrib><creatorcontrib>Elmqvist, Niklas</creatorcontrib><creatorcontrib>Ramani, Karthik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jang, Sujin</au><au>Elmqvist, Niklas</au><au>Ramani, Karthik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2016-01-31</date><risdate>2016</risdate><volume>22</volume><issue>1</issue><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26529685</pmid><doi>10.1109/TVCG.2015.2468292</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2016-01, Vol.22 (1), p.21-30
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_26529685
source IEEE Electronic Library (IEL)
subjects Analytics
Cluster Analysis
Clustering
Computer Graphics
Context
Data analysis
Data visualization
expert reviews
Flow visualization
Human motion
Human motion visualization
Humans
Image Processing, Computer-Assisted - methods
interactive clustering
Layout
motion tracking data
Movement
Pattern analysis
Pattern Recognition, Automated - methods
Perception
Researchers
Software reviews
Three-dimensional displays
Tracking
Unstructured data
user study
Visualization
title MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MotionFlow:%20Visual%20Abstraction%20and%20Aggregation%20of%20Sequential%20Patterns%20in%20Human%20Motion%20Tracking%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Jang,%20Sujin&rft.date=2016-01-31&rft.volume=22&rft.issue=1&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2015.2468292&rft_dat=%3Cproquest_RIE%3E2174299532%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174299532&rft_id=info:pmid/26529685&rft_ieee_id=7194831&rfr_iscdi=true