Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation

Ground penetrating radar (GPR) is used to evaluate deterioration of reinforced concrete bridge decks based on measuring signal attenuation from embedded rebar. The existing methods for obtaining deterioration maps from GPR data often require manual interaction and offsite processing. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2016-10, Vol.46 (10), p.2265-2276
Hauptverfasser: Kaur, Parneet, Dana, Kristin J., Romero, Francisco A., Gucunski, Nenad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2276
container_issue 10
container_start_page 2265
container_title IEEE transactions on cybernetics
container_volume 46
creator Kaur, Parneet
Dana, Kristin J.
Romero, Francisco A.
Gucunski, Nenad
description Ground penetrating radar (GPR) is used to evaluate deterioration of reinforced concrete bridge decks based on measuring signal attenuation from embedded rebar. The existing methods for obtaining deterioration maps from GPR data often require manual interaction and offsite processing. In this paper, a novel algorithm is presented for automated rebar detection and analysis. We test the process with comprehensive measurements obtained using a novel state-of-the-art robotic bridge inspection system equipped with GPR sensors. The algorithm achieves robust performance by integrating machine learning classification using image-based gradient features and robust curve fitting of the rebar hyperbolic signature. The approach avoids edge detection, thresholding, and template matching that require manual tuning and are known to perform poorly in the presence of noise and outliers. The detected hyperbolic signatures of rebars within the bridge deck are used to generate deterioration maps of the bridge deck. The results of the rebar region detector are compared quantitatively with several methods of image-based classification and a significant performance advantage is demonstrated. High rates of accuracy are reported on real data that includes thousands of individual hyperbolic rebar signatures from three real bridge decks.
doi_str_mv 10.1109/TCYB.2015.2474747
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_26513813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7302049</ieee_id><sourcerecordid>1826637117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9130fa1259c7165018c1add6a36ec3c87b05834bf2787d8f36051da5aad3f48e3</originalsourceid><addsrcrecordid>eNpdkEFLwzAUgIMoTuZ-gAgS8OKlMy9pk_Qk25xTGChjHjyVNEmls1tm0gr797Zs7uB7hxdevvdCPoSugAwBSHq_nHyMh5RAMqSx6PIEXVDgMqJUJKfHMxc9NAhhRdqQbSuV56hHeQJMArtAD6OmdmtVW4Nnbwu8sLnyeLRR1S6UARfO44XLXV1qPPal-bT40eovPP1RVaPq0m0u0VmhqmAHh9pH70_T5eQ5mr_OXiajeaRZnNZRCowUCmiSagE8ISA1KGO4YtxqpqXISSJZnBdUSGFkwThJwKhEKcOKWFrWR3f7vVvvvhsb6mxdBm2rSm2sa0IGknLOBIBo0dt_6Mo1vv1SRzGSdg_xloI9pb0Lwdsi2_pyrfwuA5J1grNOcNYJzg6C25mbw-YmX1tznPjT2QLXe6C01h6vBSOUxCn7BStTe-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830958346</pqid></control><display><type>article</type><title>Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Kaur, Parneet ; Dana, Kristin J. ; Romero, Francisco A. ; Gucunski, Nenad</creator><creatorcontrib>Kaur, Parneet ; Dana, Kristin J. ; Romero, Francisco A. ; Gucunski, Nenad</creatorcontrib><description>Ground penetrating radar (GPR) is used to evaluate deterioration of reinforced concrete bridge decks based on measuring signal attenuation from embedded rebar. The existing methods for obtaining deterioration maps from GPR data often require manual interaction and offsite processing. In this paper, a novel algorithm is presented for automated rebar detection and analysis. We test the process with comprehensive measurements obtained using a novel state-of-the-art robotic bridge inspection system equipped with GPR sensors. The algorithm achieves robust performance by integrating machine learning classification using image-based gradient features and robust curve fitting of the rebar hyperbolic signature. The approach avoids edge detection, thresholding, and template matching that require manual tuning and are known to perform poorly in the presence of noise and outliers. The detected hyperbolic signatures of rebars within the bridge deck are used to generate deterioration maps of the bridge deck. The results of the rebar region detector are compared quantitatively with several methods of image-based classification and a significant performance advantage is demonstrated. High rates of accuracy are reported on real data that includes thousands of individual hyperbolic rebar signatures from three real bridge decks.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2015.2474747</identifier><identifier>PMID: 26513813</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Automatic rebar detection ; Bridges ; Concrete ; depth correction ; Ground penetrating radar ; ground penetrating radar (GPR) ; Highway construction ; histogram of oriented gradients (HOG) ; hyperbolic signature ; Image edge detection ; machine learning ; pattern recognition ; robotic bridge inspection ; Robots ; robust curve fitting ; Support vector machines ; support vector machines (SVM) ; Training</subject><ispartof>IEEE transactions on cybernetics, 2016-10, Vol.46 (10), p.2265-2276</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9130fa1259c7165018c1add6a36ec3c87b05834bf2787d8f36051da5aad3f48e3</citedby><cites>FETCH-LOGICAL-c349t-9130fa1259c7165018c1add6a36ec3c87b05834bf2787d8f36051da5aad3f48e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7302049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7302049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26513813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaur, Parneet</creatorcontrib><creatorcontrib>Dana, Kristin J.</creatorcontrib><creatorcontrib>Romero, Francisco A.</creatorcontrib><creatorcontrib>Gucunski, Nenad</creatorcontrib><title>Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Ground penetrating radar (GPR) is used to evaluate deterioration of reinforced concrete bridge decks based on measuring signal attenuation from embedded rebar. The existing methods for obtaining deterioration maps from GPR data often require manual interaction and offsite processing. In this paper, a novel algorithm is presented for automated rebar detection and analysis. We test the process with comprehensive measurements obtained using a novel state-of-the-art robotic bridge inspection system equipped with GPR sensors. The algorithm achieves robust performance by integrating machine learning classification using image-based gradient features and robust curve fitting of the rebar hyperbolic signature. The approach avoids edge detection, thresholding, and template matching that require manual tuning and are known to perform poorly in the presence of noise and outliers. The detected hyperbolic signatures of rebars within the bridge deck are used to generate deterioration maps of the bridge deck. The results of the rebar region detector are compared quantitatively with several methods of image-based classification and a significant performance advantage is demonstrated. High rates of accuracy are reported on real data that includes thousands of individual hyperbolic rebar signatures from three real bridge decks.</description><subject>Automatic rebar detection</subject><subject>Bridges</subject><subject>Concrete</subject><subject>depth correction</subject><subject>Ground penetrating radar</subject><subject>ground penetrating radar (GPR)</subject><subject>Highway construction</subject><subject>histogram of oriented gradients (HOG)</subject><subject>hyperbolic signature</subject><subject>Image edge detection</subject><subject>machine learning</subject><subject>pattern recognition</subject><subject>robotic bridge inspection</subject><subject>Robots</subject><subject>robust curve fitting</subject><subject>Support vector machines</subject><subject>support vector machines (SVM)</subject><subject>Training</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLwzAUgIMoTuZ-gAgS8OKlMy9pk_Qk25xTGChjHjyVNEmls1tm0gr797Zs7uB7hxdevvdCPoSugAwBSHq_nHyMh5RAMqSx6PIEXVDgMqJUJKfHMxc9NAhhRdqQbSuV56hHeQJMArtAD6OmdmtVW4Nnbwu8sLnyeLRR1S6UARfO44XLXV1qPPal-bT40eovPP1RVaPq0m0u0VmhqmAHh9pH70_T5eQ5mr_OXiajeaRZnNZRCowUCmiSagE8ISA1KGO4YtxqpqXISSJZnBdUSGFkwThJwKhEKcOKWFrWR3f7vVvvvhsb6mxdBm2rSm2sa0IGknLOBIBo0dt_6Mo1vv1SRzGSdg_xloI9pb0Lwdsi2_pyrfwuA5J1grNOcNYJzg6C25mbw-YmX1tznPjT2QLXe6C01h6vBSOUxCn7BStTe-o</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Kaur, Parneet</creator><creator>Dana, Kristin J.</creator><creator>Romero, Francisco A.</creator><creator>Gucunski, Nenad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation</title><author>Kaur, Parneet ; Dana, Kristin J. ; Romero, Francisco A. ; Gucunski, Nenad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9130fa1259c7165018c1add6a36ec3c87b05834bf2787d8f36051da5aad3f48e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automatic rebar detection</topic><topic>Bridges</topic><topic>Concrete</topic><topic>depth correction</topic><topic>Ground penetrating radar</topic><topic>ground penetrating radar (GPR)</topic><topic>Highway construction</topic><topic>histogram of oriented gradients (HOG)</topic><topic>hyperbolic signature</topic><topic>Image edge detection</topic><topic>machine learning</topic><topic>pattern recognition</topic><topic>robotic bridge inspection</topic><topic>Robots</topic><topic>robust curve fitting</topic><topic>Support vector machines</topic><topic>support vector machines (SVM)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Parneet</creatorcontrib><creatorcontrib>Dana, Kristin J.</creatorcontrib><creatorcontrib>Romero, Francisco A.</creatorcontrib><creatorcontrib>Gucunski, Nenad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaur, Parneet</au><au>Dana, Kristin J.</au><au>Romero, Francisco A.</au><au>Gucunski, Nenad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2016-10</date><risdate>2016</risdate><volume>46</volume><issue>10</issue><spage>2265</spage><epage>2276</epage><pages>2265-2276</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Ground penetrating radar (GPR) is used to evaluate deterioration of reinforced concrete bridge decks based on measuring signal attenuation from embedded rebar. The existing methods for obtaining deterioration maps from GPR data often require manual interaction and offsite processing. In this paper, a novel algorithm is presented for automated rebar detection and analysis. We test the process with comprehensive measurements obtained using a novel state-of-the-art robotic bridge inspection system equipped with GPR sensors. The algorithm achieves robust performance by integrating machine learning classification using image-based gradient features and robust curve fitting of the rebar hyperbolic signature. The approach avoids edge detection, thresholding, and template matching that require manual tuning and are known to perform poorly in the presence of noise and outliers. The detected hyperbolic signatures of rebars within the bridge deck are used to generate deterioration maps of the bridge deck. The results of the rebar region detector are compared quantitatively with several methods of image-based classification and a significant performance advantage is demonstrated. High rates of accuracy are reported on real data that includes thousands of individual hyperbolic rebar signatures from three real bridge decks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26513813</pmid><doi>10.1109/TCYB.2015.2474747</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2016-10, Vol.46 (10), p.2265-2276
issn 2168-2267
2168-2275
language eng
recordid cdi_pubmed_primary_26513813
source IEEE Electronic Library (IEL)
subjects Automatic rebar detection
Bridges
Concrete
depth correction
Ground penetrating radar
ground penetrating radar (GPR)
Highway construction
histogram of oriented gradients (HOG)
hyperbolic signature
Image edge detection
machine learning
pattern recognition
robotic bridge inspection
Robots
robust curve fitting
Support vector machines
support vector machines (SVM)
Training
title Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20GPR%20Rebar%20Analysis%20for%20Robotic%20Bridge%20Deck%20Evaluation&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Kaur,%20Parneet&rft.date=2016-10&rft.volume=46&rft.issue=10&rft.spage=2265&rft.epage=2276&rft.pages=2265-2276&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2015.2474747&rft_dat=%3Cproquest_RIE%3E1826637117%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830958346&rft_id=info:pmid/26513813&rft_ieee_id=7302049&rfr_iscdi=true