Direct Synthesis of Carbon-Doped TiO2–Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries

Carbon-doped TiO2–bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-11, Vol.7 (45), p.25139-25146
Hauptverfasser: Goriparti, Subrahmanyam, Miele, Ermanno, Prato, Mirko, Scarpellini, Alice, Marras, Sergio, Monaco, Simone, Toma, Andrea, Messina, Gabriele C, Alabastri, Alessandro, Angelis, Francesco De, Manna, Liberato, Capiglia, Claudio, Zaccaria, Remo Proietti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25146
container_issue 45
container_start_page 25139
container_title ACS applied materials & interfaces
container_volume 7
creator Goriparti, Subrahmanyam
Miele, Ermanno
Prato, Mirko
Scarpellini, Alice
Marras, Sergio
Monaco, Simone
Toma, Andrea
Messina, Gabriele C
Alabastri, Alessandro
Angelis, Francesco De
Manna, Liberato
Capiglia, Claudio
Zaccaria, Remo Proietti
description Carbon-doped TiO2–bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g–1 (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g–1 even at the current rate of 10 C after 1000 charge/discharge cycles.
doi_str_mv 10.1021/acsami.5b06426
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26492841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a417651296</sourcerecordid><originalsourceid>FETCH-LOGICAL-a246t-2961692c0f8b7f7b88e4442740226cf7c85c88f0d3d8315ac995e0a6430d44b23</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EoqWwMiLPSCm2c-M4Y3-AVioUiTJHjuNQV8Su7BRUJt6BN-RJSNXCdM_wnaOrD6FLSvqUMHojVZC16ScF4cD4EerSDCASLGHH_xmgg85CWBHCY0aSU9RhHDImgHbR-9h4rRr8vLXNUgcTsKvwSPrC2Wjs1rrECzNnP1_fQ-_sp8aP0rqPthKwDHhgXanxg2y0N_It4Mp5PDGvS_ykfZtraZXGM9MszaaOps7ioWx2rA7n6KRqG_ricHvo5e52MZpEs_n9dDSYRZIBbyKWccozpkglirRKCyE0ALAUCGNcVakSiRKiImVcipgmUmVZoonkEJMSoGBxD13td9ebotZlvvamln6b_wloges90IrMV27jbftOTkm-s5vv7eYHu_EvvV1slQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Synthesis of Carbon-Doped TiO2–Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries</title><source>ACS Publications</source><creator>Goriparti, Subrahmanyam ; Miele, Ermanno ; Prato, Mirko ; Scarpellini, Alice ; Marras, Sergio ; Monaco, Simone ; Toma, Andrea ; Messina, Gabriele C ; Alabastri, Alessandro ; Angelis, Francesco De ; Manna, Liberato ; Capiglia, Claudio ; Zaccaria, Remo Proietti</creator><creatorcontrib>Goriparti, Subrahmanyam ; Miele, Ermanno ; Prato, Mirko ; Scarpellini, Alice ; Marras, Sergio ; Monaco, Simone ; Toma, Andrea ; Messina, Gabriele C ; Alabastri, Alessandro ; Angelis, Francesco De ; Manna, Liberato ; Capiglia, Claudio ; Zaccaria, Remo Proietti</creatorcontrib><description>Carbon-doped TiO2–bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g–1 (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g–1 even at the current rate of 10 C after 1000 charge/discharge cycles.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b06426</identifier><identifier>PMID: 26492841</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2015-11, Vol.7 (45), p.25139-25146</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b06426$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b06426$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26492841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goriparti, Subrahmanyam</creatorcontrib><creatorcontrib>Miele, Ermanno</creatorcontrib><creatorcontrib>Prato, Mirko</creatorcontrib><creatorcontrib>Scarpellini, Alice</creatorcontrib><creatorcontrib>Marras, Sergio</creatorcontrib><creatorcontrib>Monaco, Simone</creatorcontrib><creatorcontrib>Toma, Andrea</creatorcontrib><creatorcontrib>Messina, Gabriele C</creatorcontrib><creatorcontrib>Alabastri, Alessandro</creatorcontrib><creatorcontrib>Angelis, Francesco De</creatorcontrib><creatorcontrib>Manna, Liberato</creatorcontrib><creatorcontrib>Capiglia, Claudio</creatorcontrib><creatorcontrib>Zaccaria, Remo Proietti</creatorcontrib><title>Direct Synthesis of Carbon-Doped TiO2–Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Carbon-doped TiO2–bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g–1 (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g–1 even at the current rate of 10 C after 1000 charge/discharge cycles.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAUhS0EoqWwMiLPSCm2c-M4Y3-AVioUiTJHjuNQV8Su7BRUJt6BN-RJSNXCdM_wnaOrD6FLSvqUMHojVZC16ScF4cD4EerSDCASLGHH_xmgg85CWBHCY0aSU9RhHDImgHbR-9h4rRr8vLXNUgcTsKvwSPrC2Wjs1rrECzNnP1_fQ-_sp8aP0rqPthKwDHhgXanxg2y0N_It4Mp5PDGvS_ykfZtraZXGM9MszaaOps7ioWx2rA7n6KRqG_ricHvo5e52MZpEs_n9dDSYRZIBbyKWccozpkglirRKCyE0ALAUCGNcVakSiRKiImVcipgmUmVZoonkEJMSoGBxD13td9ebotZlvvamln6b_wloges90IrMV27jbftOTkm-s5vv7eYHu_EvvV1slQ</recordid><startdate>20151118</startdate><enddate>20151118</enddate><creator>Goriparti, Subrahmanyam</creator><creator>Miele, Ermanno</creator><creator>Prato, Mirko</creator><creator>Scarpellini, Alice</creator><creator>Marras, Sergio</creator><creator>Monaco, Simone</creator><creator>Toma, Andrea</creator><creator>Messina, Gabriele C</creator><creator>Alabastri, Alessandro</creator><creator>Angelis, Francesco De</creator><creator>Manna, Liberato</creator><creator>Capiglia, Claudio</creator><creator>Zaccaria, Remo Proietti</creator><general>American Chemical Society</general><scope>NPM</scope></search><sort><creationdate>20151118</creationdate><title>Direct Synthesis of Carbon-Doped TiO2–Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries</title><author>Goriparti, Subrahmanyam ; Miele, Ermanno ; Prato, Mirko ; Scarpellini, Alice ; Marras, Sergio ; Monaco, Simone ; Toma, Andrea ; Messina, Gabriele C ; Alabastri, Alessandro ; Angelis, Francesco De ; Manna, Liberato ; Capiglia, Claudio ; Zaccaria, Remo Proietti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a246t-2961692c0f8b7f7b88e4442740226cf7c85c88f0d3d8315ac995e0a6430d44b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goriparti, Subrahmanyam</creatorcontrib><creatorcontrib>Miele, Ermanno</creatorcontrib><creatorcontrib>Prato, Mirko</creatorcontrib><creatorcontrib>Scarpellini, Alice</creatorcontrib><creatorcontrib>Marras, Sergio</creatorcontrib><creatorcontrib>Monaco, Simone</creatorcontrib><creatorcontrib>Toma, Andrea</creatorcontrib><creatorcontrib>Messina, Gabriele C</creatorcontrib><creatorcontrib>Alabastri, Alessandro</creatorcontrib><creatorcontrib>Angelis, Francesco De</creatorcontrib><creatorcontrib>Manna, Liberato</creatorcontrib><creatorcontrib>Capiglia, Claudio</creatorcontrib><creatorcontrib>Zaccaria, Remo Proietti</creatorcontrib><collection>PubMed</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goriparti, Subrahmanyam</au><au>Miele, Ermanno</au><au>Prato, Mirko</au><au>Scarpellini, Alice</au><au>Marras, Sergio</au><au>Monaco, Simone</au><au>Toma, Andrea</au><au>Messina, Gabriele C</au><au>Alabastri, Alessandro</au><au>Angelis, Francesco De</au><au>Manna, Liberato</au><au>Capiglia, Claudio</au><au>Zaccaria, Remo Proietti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Synthesis of Carbon-Doped TiO2–Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-11-18</date><risdate>2015</risdate><volume>7</volume><issue>45</issue><spage>25139</spage><epage>25146</epage><pages>25139-25146</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Carbon-doped TiO2–bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g–1 (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g–1 even at the current rate of 10 C after 1000 charge/discharge cycles.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26492841</pmid><doi>10.1021/acsami.5b06426</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2015-11, Vol.7 (45), p.25139-25146
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmed_primary_26492841
source ACS Publications
title Direct Synthesis of Carbon-Doped TiO2–Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Synthesis%20of%20Carbon-Doped%20TiO2%E2%80%93Bronze%20Nanowires%20as%20Anode%20Materials%20for%20High%20Performance%20Lithium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Goriparti,%20Subrahmanyam&rft.date=2015-11-18&rft.volume=7&rft.issue=45&rft.spage=25139&rft.epage=25146&rft.pages=25139-25146&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b06426&rft_dat=%3Cacs_pubme%3Ea417651296%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26492841&rfr_iscdi=true