Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies

Semiconductor quantum dots and wires are important building blocks for future electronic and optoelectronic devices. The common way of producing semiconductor nanostructures is by molecular beam epitaxy (MBE). In this additive growth process atoms are deposited onto crystalline surfaces and self-ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-12, Vol.7 (45), p.18928-18935
Hauptverfasser: Ou, Xin, Heinig, Karl-Heinz, Hübner, René, Grenzer, Jörg, Wang, Xi, Helm, Manfred, Fassbender, Jürgen, Facsko, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18935
container_issue 45
container_start_page 18928
container_title Nanoscale
container_volume 7
creator Ou, Xin
Heinig, Karl-Heinz
Hübner, René
Grenzer, Jörg
Wang, Xi
Helm, Manfred
Fassbender, Jürgen
Facsko, Stefan
description Semiconductor quantum dots and wires are important building blocks for future electronic and optoelectronic devices. The common way of producing semiconductor nanostructures is by molecular beam epitaxy (MBE). In this additive growth process atoms are deposited onto crystalline surfaces and self-assemble into 3D structures. Here we present a subtractive process, in which surface vacancies are created by ion impacts. On terraces of crystalline surfaces their nucleation forms depressions which coarsen and finally lead to a self-organized 3D morphology. It is shown that this kind of spontaneous pattern formation is inherent to the ion induced erosion process on crystalline surfaces and is analogous to 3D growth by MBE. However, novel facets are found due to slightly different energetics and kinetics of ad-atoms and surface vacancies, especially at Ehrlich-Schwoebel step-edge barriers. Depending on the crystal orientation, three-fold, four-fold, six-fold symmetry, as well as extremely regular periodic nanogrooves can be produced on different orientations of group IV (Si, Ge) and III-V (GaAs, InAs) semiconductors. On terraces of crystalline surfaces vacancies created by ion impacts nucleate and form depressions which coarsen and finally lead to 3D morphology patterns. Depending on the crystal orientation, two fold, three-fold, four-fold, or six-fold symmetric patterns evolve on different surfaces.
doi_str_mv 10.1039/c5nr04297f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26361055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816000548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6b6c8a74772ddfbf079dce67bc870a0055f7c08276a44b4a0e372d9554ab13063</originalsourceid><addsrcrecordid>eNp90UtLxDAUBeAgio_RjXsl7kSopk2atEsZHBVEYdB1uUlvtNLHmKRq_73VGcedqwTycbj3hJDDmJ3HjOcXJm0dE0mu7AbZTZhgEecq2Vzfpdghe96_MiZzLvk22UkklzFL010yn4HBgCVtoe18cL0JvUMKzsHg6UcVXih-BocNUofPfQ2uCgPVA_VY2wi8x0bXA-0sfQcDranQ75MtC7XHg9U5IU-zq8fpTXT3cH07vbyLjBBpiKSWJgMllErK0mrLVF4alEqbTDFg43RWGZYlSoIQWgDDcakyT1MBOuZM8gk5XeYuXPfWow9FU3mDdQ0tdr0v4iyWbMwR2UjPltS4znuHtli4qgE3FDErvjsspun9_KfD2YiPV7m9brBc09_SRnCyBM6b9evfJxSL0o7m6D_DvwCqyIJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816000548</pqid></control><display><type>article</type><title>Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ou, Xin ; Heinig, Karl-Heinz ; Hübner, René ; Grenzer, Jörg ; Wang, Xi ; Helm, Manfred ; Fassbender, Jürgen ; Facsko, Stefan</creator><creatorcontrib>Ou, Xin ; Heinig, Karl-Heinz ; Hübner, René ; Grenzer, Jörg ; Wang, Xi ; Helm, Manfred ; Fassbender, Jürgen ; Facsko, Stefan</creatorcontrib><description>Semiconductor quantum dots and wires are important building blocks for future electronic and optoelectronic devices. The common way of producing semiconductor nanostructures is by molecular beam epitaxy (MBE). In this additive growth process atoms are deposited onto crystalline surfaces and self-assemble into 3D structures. Here we present a subtractive process, in which surface vacancies are created by ion impacts. On terraces of crystalline surfaces their nucleation forms depressions which coarsen and finally lead to a self-organized 3D morphology. It is shown that this kind of spontaneous pattern formation is inherent to the ion induced erosion process on crystalline surfaces and is analogous to 3D growth by MBE. However, novel facets are found due to slightly different energetics and kinetics of ad-atoms and surface vacancies, especially at Ehrlich-Schwoebel step-edge barriers. Depending on the crystal orientation, three-fold, four-fold, six-fold symmetry, as well as extremely regular periodic nanogrooves can be produced on different orientations of group IV (Si, Ge) and III-V (GaAs, InAs) semiconductors. On terraces of crystalline surfaces vacancies created by ion impacts nucleate and form depressions which coarsen and finally lead to 3D morphology patterns. Depending on the crystal orientation, two fold, three-fold, four-fold, or six-fold symmetric patterns evolve on different surfaces.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr04297f</identifier><identifier>PMID: 26361055</identifier><language>eng</language><publisher>England</publisher><subject>Crystal structure ; Molecular beam epitaxy ; Nanostructure ; Optoelectronic devices ; Self assembly ; Semiconductors ; Three dimensional ; Vacancies</subject><ispartof>Nanoscale, 2015-12, Vol.7 (45), p.18928-18935</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6b6c8a74772ddfbf079dce67bc870a0055f7c08276a44b4a0e372d9554ab13063</citedby><cites>FETCH-LOGICAL-c445t-6b6c8a74772ddfbf079dce67bc870a0055f7c08276a44b4a0e372d9554ab13063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26361055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ou, Xin</creatorcontrib><creatorcontrib>Heinig, Karl-Heinz</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Grenzer, Jörg</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Fassbender, Jürgen</creatorcontrib><creatorcontrib>Facsko, Stefan</creatorcontrib><title>Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Semiconductor quantum dots and wires are important building blocks for future electronic and optoelectronic devices. The common way of producing semiconductor nanostructures is by molecular beam epitaxy (MBE). In this additive growth process atoms are deposited onto crystalline surfaces and self-assemble into 3D structures. Here we present a subtractive process, in which surface vacancies are created by ion impacts. On terraces of crystalline surfaces their nucleation forms depressions which coarsen and finally lead to a self-organized 3D morphology. It is shown that this kind of spontaneous pattern formation is inherent to the ion induced erosion process on crystalline surfaces and is analogous to 3D growth by MBE. However, novel facets are found due to slightly different energetics and kinetics of ad-atoms and surface vacancies, especially at Ehrlich-Schwoebel step-edge barriers. Depending on the crystal orientation, three-fold, four-fold, six-fold symmetry, as well as extremely regular periodic nanogrooves can be produced on different orientations of group IV (Si, Ge) and III-V (GaAs, InAs) semiconductors. On terraces of crystalline surfaces vacancies created by ion impacts nucleate and form depressions which coarsen and finally lead to 3D morphology patterns. Depending on the crystal orientation, two fold, three-fold, four-fold, or six-fold symmetric patterns evolve on different surfaces.</description><subject>Crystal structure</subject><subject>Molecular beam epitaxy</subject><subject>Nanostructure</subject><subject>Optoelectronic devices</subject><subject>Self assembly</subject><subject>Semiconductors</subject><subject>Three dimensional</subject><subject>Vacancies</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90UtLxDAUBeAgio_RjXsl7kSopk2atEsZHBVEYdB1uUlvtNLHmKRq_73VGcedqwTycbj3hJDDmJ3HjOcXJm0dE0mu7AbZTZhgEecq2Vzfpdghe96_MiZzLvk22UkklzFL010yn4HBgCVtoe18cL0JvUMKzsHg6UcVXih-BocNUofPfQ2uCgPVA_VY2wi8x0bXA-0sfQcDranQ75MtC7XHg9U5IU-zq8fpTXT3cH07vbyLjBBpiKSWJgMllErK0mrLVF4alEqbTDFg43RWGZYlSoIQWgDDcakyT1MBOuZM8gk5XeYuXPfWow9FU3mDdQ0tdr0v4iyWbMwR2UjPltS4znuHtli4qgE3FDErvjsspun9_KfD2YiPV7m9brBc09_SRnCyBM6b9evfJxSL0o7m6D_DvwCqyIJU</recordid><startdate>20151207</startdate><enddate>20151207</enddate><creator>Ou, Xin</creator><creator>Heinig, Karl-Heinz</creator><creator>Hübner, René</creator><creator>Grenzer, Jörg</creator><creator>Wang, Xi</creator><creator>Helm, Manfred</creator><creator>Fassbender, Jürgen</creator><creator>Facsko, Stefan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151207</creationdate><title>Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies</title><author>Ou, Xin ; Heinig, Karl-Heinz ; Hübner, René ; Grenzer, Jörg ; Wang, Xi ; Helm, Manfred ; Fassbender, Jürgen ; Facsko, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6b6c8a74772ddfbf079dce67bc870a0055f7c08276a44b4a0e372d9554ab13063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal structure</topic><topic>Molecular beam epitaxy</topic><topic>Nanostructure</topic><topic>Optoelectronic devices</topic><topic>Self assembly</topic><topic>Semiconductors</topic><topic>Three dimensional</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Xin</creatorcontrib><creatorcontrib>Heinig, Karl-Heinz</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Grenzer, Jörg</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Fassbender, Jürgen</creatorcontrib><creatorcontrib>Facsko, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Xin</au><au>Heinig, Karl-Heinz</au><au>Hübner, René</au><au>Grenzer, Jörg</au><au>Wang, Xi</au><au>Helm, Manfred</au><au>Fassbender, Jürgen</au><au>Facsko, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-12-07</date><risdate>2015</risdate><volume>7</volume><issue>45</issue><spage>18928</spage><epage>18935</epage><pages>18928-18935</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Semiconductor quantum dots and wires are important building blocks for future electronic and optoelectronic devices. The common way of producing semiconductor nanostructures is by molecular beam epitaxy (MBE). In this additive growth process atoms are deposited onto crystalline surfaces and self-assemble into 3D structures. Here we present a subtractive process, in which surface vacancies are created by ion impacts. On terraces of crystalline surfaces their nucleation forms depressions which coarsen and finally lead to a self-organized 3D morphology. It is shown that this kind of spontaneous pattern formation is inherent to the ion induced erosion process on crystalline surfaces and is analogous to 3D growth by MBE. However, novel facets are found due to slightly different energetics and kinetics of ad-atoms and surface vacancies, especially at Ehrlich-Schwoebel step-edge barriers. Depending on the crystal orientation, three-fold, four-fold, six-fold symmetry, as well as extremely regular periodic nanogrooves can be produced on different orientations of group IV (Si, Ge) and III-V (GaAs, InAs) semiconductors. On terraces of crystalline surfaces vacancies created by ion impacts nucleate and form depressions which coarsen and finally lead to 3D morphology patterns. Depending on the crystal orientation, two fold, three-fold, four-fold, or six-fold symmetric patterns evolve on different surfaces.</abstract><cop>England</cop><pmid>26361055</pmid><doi>10.1039/c5nr04297f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2015-12, Vol.7 (45), p.18928-18935
issn 2040-3364
2040-3372
language eng
recordid cdi_pubmed_primary_26361055
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Crystal structure
Molecular beam epitaxy
Nanostructure
Optoelectronic devices
Self assembly
Semiconductors
Three dimensional
Vacancies
title Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faceted%20nanostructure%20arrays%20with%20extreme%20regularity%20by%20self-assembly%20of%20vacancies&rft.jtitle=Nanoscale&rft.au=Ou,%20Xin&rft.date=2015-12-07&rft.volume=7&rft.issue=45&rft.spage=18928&rft.epage=18935&rft.pages=18928-18935&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr04297f&rft_dat=%3Cproquest_pubme%3E1816000548%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816000548&rft_id=info:pmid/26361055&rfr_iscdi=true