Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory
Mining knowledge from gene expression data is a hot research topic and direction of bioinformatics. Gene selection and sample classification are significant research trends, due to the large amount of genes and small size of samples in gene expression data. Rough set theory has been successfully app...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2015-03, Vol.12 (2), p.433-444 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 444 |
---|---|
container_issue | 2 |
container_start_page | 433 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 12 |
creator | Meng, Jun Zhang, Jing Luan, Yushi |
description | Mining knowledge from gene expression data is a hot research topic and direction of bioinformatics. Gene selection and sample classification are significant research trends, due to the large amount of genes and small size of samples in gene expression data. Rough set theory has been successfully applied to gene selection, as it can select attributes without redundancy. To improve the interpretability of the selected genes, some researchers introduced biological knowledge. In this paper, we first employ neighborhood system to deal directly with the new information table formed by integrating gene expression data with biological knowledge, which can simultaneously present the information in multiple perspectives and do not weaken the information of individual gene for selection and classification. Then, we give a novel framework for gene selection and propose a significant gene selection method based on this framework by employing reduction algorithm in rough set theory. The proposed method is applied to the analysis of plant stress response. Experimental results on three data sets show that the proposed method is effective, as it can select significant gene subsets without redundancy and achieve high classification accuracy. Biological analysis for the results shows that the interpretability is well. |
doi_str_mv | 10.1109/TCBB.2014.2361329 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_26357229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6920020</ieee_id><sourcerecordid>1685789715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a4899814c1e0a193518785bb85d173a8205d5d4991ecd21703e4ea6bc712259a3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwAxASssSFSxaPP-L4yK7oh6gAdbfnyElmE1dZe2s7qlbqjyfLbnvgAieP5Gfe0eiZLHsPdAZA9ZfVYj6fMQpixngBnOkX2SlIqXKtC_FyXwuZS13wk-xNjHeUMqGpeJ2dsIJLxZg-zR4v0CFZ4oBNst6RK5ewCyZhSx5s6snc-sF3tjED-e78w4Bth2TtA_k1GJfIMgWMkdxg3HoXkdxG6zryA23X1z703rdkuYsJN8S4ltz4seunYYmsevRh9zZ7tTZDxHfH9yy7Pf-2Wlzm1z8vrhZfr_NGgEy5EaXWJYgGkBrQXEKpSlnXpWxBcVMyKlvZCq0Bm5aBohwFmqJuFDAmteFn2edD7jb4-xFjqjY2NjhMK6AfYwUKQHKplfw3WpRSlVrB_6Cq4EJRyif001_onR-Dm3b-E8g0cFpOFByoJvgYA66rbbAbE3YV0GovvNoLr_bCq6PwqefjMXmsN9g-dzwZnoAPB8Ai4vN3odl0DZT_BmwWrT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685291308</pqid></control><display><type>article</type><title>Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Meng, Jun ; Zhang, Jing ; Luan, Yushi</creator><creatorcontrib>Meng, Jun ; Zhang, Jing ; Luan, Yushi</creatorcontrib><description>Mining knowledge from gene expression data is a hot research topic and direction of bioinformatics. Gene selection and sample classification are significant research trends, due to the large amount of genes and small size of samples in gene expression data. Rough set theory has been successfully applied to gene selection, as it can select attributes without redundancy. To improve the interpretability of the selected genes, some researchers introduced biological knowledge. In this paper, we first employ neighborhood system to deal directly with the new information table formed by integrating gene expression data with biological knowledge, which can simultaneously present the information in multiple perspectives and do not weaken the information of individual gene for selection and classification. Then, we give a novel framework for gene selection and propose a significant gene selection method based on this framework by employing reduction algorithm in rough set theory. The proposed method is applied to the analysis of plant stress response. Experimental results on three data sets show that the proposed method is effective, as it can select significant gene subsets without redundancy and achieve high classification accuracy. Biological analysis for the results shows that the interpretability is well.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2014.2361329</identifier><identifier>PMID: 26357229</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Bioinformatics ; Biological ; biological knowledge ; Classification ; Classification algorithms ; Computational Biology - methods ; Data mining ; Gene expression ; gene expression data ; Gene Expression Profiling - methods ; Gene Expression Regulation, Plant - genetics ; gene selection ; Genes ; neighborhood system ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant stress ; Redundancy ; Rough set ; Set theory ; Stress, Physiological - genetics</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2015-03, Vol.12 (2), p.433-444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar/Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a4899814c1e0a193518785bb85d173a8205d5d4991ecd21703e4ea6bc712259a3</citedby><cites>FETCH-LOGICAL-c415t-a4899814c1e0a193518785bb85d173a8205d5d4991ecd21703e4ea6bc712259a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6920020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6920020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26357229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Jun</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Luan, Yushi</creatorcontrib><title>Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Mining knowledge from gene expression data is a hot research topic and direction of bioinformatics. Gene selection and sample classification are significant research trends, due to the large amount of genes and small size of samples in gene expression data. Rough set theory has been successfully applied to gene selection, as it can select attributes without redundancy. To improve the interpretability of the selected genes, some researchers introduced biological knowledge. In this paper, we first employ neighborhood system to deal directly with the new information table formed by integrating gene expression data with biological knowledge, which can simultaneously present the information in multiple perspectives and do not weaken the information of individual gene for selection and classification. Then, we give a novel framework for gene selection and propose a significant gene selection method based on this framework by employing reduction algorithm in rough set theory. The proposed method is applied to the analysis of plant stress response. Experimental results on three data sets show that the proposed method is effective, as it can select significant gene subsets without redundancy and achieve high classification accuracy. Biological analysis for the results shows that the interpretability is well.</description><subject>Algorithms</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Bioinformatics</subject><subject>Biological</subject><subject>biological knowledge</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Computational Biology - methods</subject><subject>Data mining</subject><subject>Gene expression</subject><subject>gene expression data</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>gene selection</subject><subject>Genes</subject><subject>neighborhood system</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant stress</subject><subject>Redundancy</subject><subject>Rough set</subject><subject>Set theory</subject><subject>Stress, Physiological - genetics</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwAxASssSFSxaPP-L4yK7oh6gAdbfnyElmE1dZe2s7qlbqjyfLbnvgAieP5Gfe0eiZLHsPdAZA9ZfVYj6fMQpixngBnOkX2SlIqXKtC_FyXwuZS13wk-xNjHeUMqGpeJ2dsIJLxZg-zR4v0CFZ4oBNst6RK5ewCyZhSx5s6snc-sF3tjED-e78w4Bth2TtA_k1GJfIMgWMkdxg3HoXkdxG6zryA23X1z703rdkuYsJN8S4ltz4seunYYmsevRh9zZ7tTZDxHfH9yy7Pf-2Wlzm1z8vrhZfr_NGgEy5EaXWJYgGkBrQXEKpSlnXpWxBcVMyKlvZCq0Bm5aBohwFmqJuFDAmteFn2edD7jb4-xFjqjY2NjhMK6AfYwUKQHKplfw3WpRSlVrB_6Cq4EJRyif001_onR-Dm3b-E8g0cFpOFByoJvgYA66rbbAbE3YV0GovvNoLr_bCq6PwqefjMXmsN9g-dzwZnoAPB8Ai4vN3odl0DZT_BmwWrT4</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Meng, Jun</creator><creator>Zhang, Jing</creator><creator>Luan, Yushi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory</title><author>Meng, Jun ; Zhang, Jing ; Luan, Yushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a4899814c1e0a193518785bb85d173a8205d5d4991ecd21703e4ea6bc712259a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Bioinformatics</topic><topic>Biological</topic><topic>biological knowledge</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Computational Biology - methods</topic><topic>Data mining</topic><topic>Gene expression</topic><topic>gene expression data</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>gene selection</topic><topic>Genes</topic><topic>neighborhood system</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant stress</topic><topic>Redundancy</topic><topic>Rough set</topic><topic>Set theory</topic><topic>Stress, Physiological - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Jun</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Luan, Yushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meng, Jun</au><au>Zhang, Jing</au><au>Luan, Yushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2015-03</date><risdate>2015</risdate><volume>12</volume><issue>2</issue><spage>433</spage><epage>444</epage><pages>433-444</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Mining knowledge from gene expression data is a hot research topic and direction of bioinformatics. Gene selection and sample classification are significant research trends, due to the large amount of genes and small size of samples in gene expression data. Rough set theory has been successfully applied to gene selection, as it can select attributes without redundancy. To improve the interpretability of the selected genes, some researchers introduced biological knowledge. In this paper, we first employ neighborhood system to deal directly with the new information table formed by integrating gene expression data with biological knowledge, which can simultaneously present the information in multiple perspectives and do not weaken the information of individual gene for selection and classification. Then, we give a novel framework for gene selection and propose a significant gene selection method based on this framework by employing reduction algorithm in rough set theory. The proposed method is applied to the analysis of plant stress response. Experimental results on three data sets show that the proposed method is effective, as it can select significant gene subsets without redundancy and achieve high classification accuracy. Biological analysis for the results shows that the interpretability is well.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26357229</pmid><doi>10.1109/TCBB.2014.2361329</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2015-03, Vol.12 (2), p.433-444 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_pubmed_primary_26357229 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - physiology Bioinformatics Biological biological knowledge Classification Classification algorithms Computational Biology - methods Data mining Gene expression gene expression data Gene Expression Profiling - methods Gene Expression Regulation, Plant - genetics gene selection Genes neighborhood system Plant Proteins - genetics Plant Proteins - metabolism Plant stress Redundancy Rough set Set theory Stress, Physiological - genetics |
title | Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Selection%20Integrated%20with%20Biological%20Knowledge%20for%20Plant%20Stress%20Response%20Using%20Neighborhood%20System%20and%20Rough%20Set%20Theory&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Meng,%20Jun&rft.date=2015-03&rft.volume=12&rft.issue=2&rft.spage=433&rft.epage=444&rft.pages=433-444&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2014.2361329&rft_dat=%3Cproquest_RIE%3E1685789715%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685291308&rft_id=info:pmid/26357229&rft_ieee_id=6920020&rfr_iscdi=true |