Conforming Morse-Smale Complexes

Morse-Smale (MS) complexes have been gaining popularity as a tool for feature-driven data analysis and visualization. However, the quality of their geometric embedding and the sole dependence on the input scalar field data can limit their applicability when expressing application-dependent features....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2014-12, Vol.20 (12), p.2595-2603
Hauptverfasser: Gyulassy, Attila, Gunther, David, Levine, Joshua A., Tierny, Julien, Pascucci, Valerio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2603
container_issue 12
container_start_page 2595
container_title IEEE transactions on visualization and computer graphics
container_volume 20
creator Gyulassy, Attila
Gunther, David
Levine, Joshua A.
Tierny, Julien
Pascucci, Valerio
description Morse-Smale (MS) complexes have been gaining popularity as a tool for feature-driven data analysis and visualization. However, the quality of their geometric embedding and the sole dependence on the input scalar field data can limit their applicability when expressing application-dependent features. In this paper we introduce a new combinatorial technique to compute an MS complex that conforms to both an input scalar field and an additional, prior segmentation of the domain. The segmentation constrains the MS complex computation guaranteeing that boundaries in the segmentation are captured as separatrices of the MS complex. We demonstrate the utility and versatility of our approach with two applications. First, we use streamline integration to determine numerically computed basins/mountains and use the resulting segmentation as an input to our algorithm. This strategy enables the incorporation of prior flow path knowledge, effectively resulting in an MS complex that is as geometrically accurate as the employed numerical integration. Our second use case is motivated by the observation that often the data itself does not explicitly contain features known to be present by a domain expert. We introduce edit operations for MS complexes so that a user can directly modify their features while maintaining all the advantages of a robust topology-based representation.
doi_str_mv 10.1109/TVCG.2014.2346434
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_26356973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6875918</ieee_id><sourcerecordid>3670120431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-56fcd8f00704a4aa058b7a6fc6b136f4a5e0e7aea064543f4388074f433776b3</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEYnz9AISEEFzg0GE3X80RTXxJQxyYuEZZ50JR24ymQ_DvSdWxAydbbx7bsV_GjhHGiGCuZ6-T-3EKKMYpF0pwscX20AhMQILajjlonaQqVSO2H8IHRFJkZpeNUsWlMprvsbOJbwrf1mXzdvbk20DJS-0qinK9rOibwiHbKVwV6GgdD9js7nY2eUimz_ePk5tpkkvALpGqyBdZAaBBOOEcyGyuXRTVHLkqhJMEpB05UEIKXgieZaBFjFxrNecH7Hxo60NX2pCXHeXvuW8ayjuLaYpKQ4SuBujdVXbZlrVrf6x3pX24mdpeA8R4B519YWQvB3bZ-s8Vhc7WZcipqlxDfhUsakQptDEmohf_0A-_apu4rY1jlRGp5P1wHKi89SG0VGx-gGB7O2xvh-3tsGs7Ys3puvNqXtNiU_F3_wicDEBJRJtnlWlpMOO_kmKJiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676942530</pqid></control><display><type>article</type><title>Conforming Morse-Smale Complexes</title><source>IEEE Electronic Library (IEL)</source><creator>Gyulassy, Attila ; Gunther, David ; Levine, Joshua A. ; Tierny, Julien ; Pascucci, Valerio</creator><creatorcontrib>Gyulassy, Attila ; Gunther, David ; Levine, Joshua A. ; Tierny, Julien ; Pascucci, Valerio ; Univ. of Utah, Salt Lake City, UT (United States). Scientific Computing and Imaging (SCI) Inst</creatorcontrib><description>Morse-Smale (MS) complexes have been gaining popularity as a tool for feature-driven data analysis and visualization. However, the quality of their geometric embedding and the sole dependence on the input scalar field data can limit their applicability when expressing application-dependent features. In this paper we introduce a new combinatorial technique to compute an MS complex that conforms to both an input scalar field and an additional, prior segmentation of the domain. The segmentation constrains the MS complex computation guaranteeing that boundaries in the segmentation are captured as separatrices of the MS complex. We demonstrate the utility and versatility of our approach with two applications. First, we use streamline integration to determine numerically computed basins/mountains and use the resulting segmentation as an input to our algorithm. This strategy enables the incorporation of prior flow path knowledge, effectively resulting in an MS complex that is as geometrically accurate as the employed numerical integration. Our second use case is motivated by the observation that often the data itself does not explicitly contain features known to be present by a domain expert. We introduce edit operations for MS complexes so that a user can directly modify their features while maintaining all the advantages of a robust topology-based representation.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2014.2346434</identifier><identifier>PMID: 26356973</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computational Geometry, Data Analysis, Data Visualization ; Computer Science ; Face recognition ; Feature extraction ; Geometry ; Information analysis ; Manifolds ; MATHEMATICS AND COMPUTING</subject><ispartof>IEEE transactions on visualization and computer graphics, 2014-12, Vol.20 (12), p.2595-2603</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-56fcd8f00704a4aa058b7a6fc6b136f4a5e0e7aea064543f4388074f433776b3</citedby><cites>FETCH-LOGICAL-c501t-56fcd8f00704a4aa058b7a6fc6b136f4a5e0e7aea064543f4388074f433776b3</cites><orcidid>0000-0003-0056-2831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6875918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6875918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26356973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01146478$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1221670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gyulassy, Attila</creatorcontrib><creatorcontrib>Gunther, David</creatorcontrib><creatorcontrib>Levine, Joshua A.</creatorcontrib><creatorcontrib>Tierny, Julien</creatorcontrib><creatorcontrib>Pascucci, Valerio</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States). Scientific Computing and Imaging (SCI) Inst</creatorcontrib><title>Conforming Morse-Smale Complexes</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Morse-Smale (MS) complexes have been gaining popularity as a tool for feature-driven data analysis and visualization. However, the quality of their geometric embedding and the sole dependence on the input scalar field data can limit their applicability when expressing application-dependent features. In this paper we introduce a new combinatorial technique to compute an MS complex that conforms to both an input scalar field and an additional, prior segmentation of the domain. The segmentation constrains the MS complex computation guaranteeing that boundaries in the segmentation are captured as separatrices of the MS complex. We demonstrate the utility and versatility of our approach with two applications. First, we use streamline integration to determine numerically computed basins/mountains and use the resulting segmentation as an input to our algorithm. This strategy enables the incorporation of prior flow path knowledge, effectively resulting in an MS complex that is as geometrically accurate as the employed numerical integration. Our second use case is motivated by the observation that often the data itself does not explicitly contain features known to be present by a domain expert. We introduce edit operations for MS complexes so that a user can directly modify their features while maintaining all the advantages of a robust topology-based representation.</description><subject>Computational Geometry, Data Analysis, Data Visualization</subject><subject>Computer Science</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Geometry</subject><subject>Information analysis</subject><subject>Manifolds</subject><subject>MATHEMATICS AND COMPUTING</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1PwzAMhiMEYnz9AISEEFzg0GE3X80RTXxJQxyYuEZZ50JR24ymQ_DvSdWxAydbbx7bsV_GjhHGiGCuZ6-T-3EKKMYpF0pwscX20AhMQILajjlonaQqVSO2H8IHRFJkZpeNUsWlMprvsbOJbwrf1mXzdvbk20DJS-0qinK9rOibwiHbKVwV6GgdD9js7nY2eUimz_ePk5tpkkvALpGqyBdZAaBBOOEcyGyuXRTVHLkqhJMEpB05UEIKXgieZaBFjFxrNecH7Hxo60NX2pCXHeXvuW8ayjuLaYpKQ4SuBujdVXbZlrVrf6x3pX24mdpeA8R4B519YWQvB3bZ-s8Vhc7WZcipqlxDfhUsakQptDEmohf_0A-_apu4rY1jlRGp5P1wHKi89SG0VGx-gGB7O2xvh-3tsGs7Ys3puvNqXtNiU_F3_wicDEBJRJtnlWlpMOO_kmKJiA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Gyulassy, Attila</creator><creator>Gunther, David</creator><creator>Levine, Joshua A.</creator><creator>Tierny, Julien</creator><creator>Pascucci, Valerio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0056-2831</orcidid></search><sort><creationdate>20141201</creationdate><title>Conforming Morse-Smale Complexes</title><author>Gyulassy, Attila ; Gunther, David ; Levine, Joshua A. ; Tierny, Julien ; Pascucci, Valerio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-56fcd8f00704a4aa058b7a6fc6b136f4a5e0e7aea064543f4388074f433776b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational Geometry, Data Analysis, Data Visualization</topic><topic>Computer Science</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Geometry</topic><topic>Information analysis</topic><topic>Manifolds</topic><topic>MATHEMATICS AND COMPUTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyulassy, Attila</creatorcontrib><creatorcontrib>Gunther, David</creatorcontrib><creatorcontrib>Levine, Joshua A.</creatorcontrib><creatorcontrib>Tierny, Julien</creatorcontrib><creatorcontrib>Pascucci, Valerio</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States). Scientific Computing and Imaging (SCI) Inst</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gyulassy, Attila</au><au>Gunther, David</au><au>Levine, Joshua A.</au><au>Tierny, Julien</au><au>Pascucci, Valerio</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States). Scientific Computing and Imaging (SCI) Inst</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conforming Morse-Smale Complexes</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>20</volume><issue>12</issue><spage>2595</spage><epage>2603</epage><pages>2595-2603</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Morse-Smale (MS) complexes have been gaining popularity as a tool for feature-driven data analysis and visualization. However, the quality of their geometric embedding and the sole dependence on the input scalar field data can limit their applicability when expressing application-dependent features. In this paper we introduce a new combinatorial technique to compute an MS complex that conforms to both an input scalar field and an additional, prior segmentation of the domain. The segmentation constrains the MS complex computation guaranteeing that boundaries in the segmentation are captured as separatrices of the MS complex. We demonstrate the utility and versatility of our approach with two applications. First, we use streamline integration to determine numerically computed basins/mountains and use the resulting segmentation as an input to our algorithm. This strategy enables the incorporation of prior flow path knowledge, effectively resulting in an MS complex that is as geometrically accurate as the employed numerical integration. Our second use case is motivated by the observation that often the data itself does not explicitly contain features known to be present by a domain expert. We introduce edit operations for MS complexes so that a user can directly modify their features while maintaining all the advantages of a robust topology-based representation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26356973</pmid><doi>10.1109/TVCG.2014.2346434</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0056-2831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2014-12, Vol.20 (12), p.2595-2603
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_26356973
source IEEE Electronic Library (IEL)
subjects Computational Geometry, Data Analysis, Data Visualization
Computer Science
Face recognition
Feature extraction
Geometry
Information analysis
Manifolds
MATHEMATICS AND COMPUTING
title Conforming Morse-Smale Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conforming%20Morse-Smale%20Complexes&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Gyulassy,%20Attila&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States).%20Scientific%20Computing%20and%20Imaging%20(SCI)%20Inst&rft.date=2014-12-01&rft.volume=20&rft.issue=12&rft.spage=2595&rft.epage=2603&rft.pages=2595-2603&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2014.2346434&rft_dat=%3Cproquest_RIE%3E3670120431%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676942530&rft_id=info:pmid/26356973&rft_ieee_id=6875918&rfr_iscdi=true