Multimodal Similarity-Preserving Hashing

We introduce an efficient computational framework for hashing data belonging to multiple modalities into a single representation space where they become mutually comparable. The proposed approach is based on a novel coupled siamese neural network architecture and allows unified treatment of intra- a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2014-04, Vol.36 (4), p.824-830
Hauptverfasser: Masci, Jonathan, Bronstein, Michael M., Bronstein, Alexander M., Schmidhuber, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 4
container_start_page 824
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 36
creator Masci, Jonathan
Bronstein, Michael M.
Bronstein, Alexander M.
Schmidhuber, Jürgen
description We introduce an efficient computational framework for hashing data belonging to multiple modalities into a single representation space where they become mutually comparable. The proposed approach is based on a novel coupled siamese neural network architecture and allows unified treatment of intra- and inter-modality similarity learning. Unlike existing cross-modality similarity learning approaches, our hashing functions are not limited to binarized linear projections and can assume arbitrarily complex forms. We show experimentally that our method significantly outperforms state-of-the-art hashing approaches on multimedia retrieval tasks.
doi_str_mv 10.1109/TPAMI.2013.225
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_26353203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6654144</ieee_id><sourcerecordid>1711535608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1be4918e06caac5b55902b88626ca81bf134f6754093cb9424bb2415480c97e03</originalsourceid><addsrcrecordid>eNqF0EtLAzEQwPEgitbq1YsgBRG8bJ3Jq8mxFB8Fi4J6XrIxqyn7qElX6Lc32qrgxdNA8stA_oQcIQwRQV883o9n0yEFZENKxRbpoWY6Y4LpbdIDlDRTiqo9sh_jHAC5ALZL9qhMggLrkfNZVy193T6bavDga1-Z4Jer7D646MK7b14GNya-pnlAdkpTRXe4mX3ydHX5OLnJbu-up5PxbWY5yGWGheMalQNpjbGiEEIDLZSSNB0oLEpkvJQjwUEzW2hOeVFQjoIrsHrkgPXJ-XrvIrRvnYvLvPbRuqoyjWu7mOMIUTAhQf1PBQOtqdY60dM_dN52oUkfSSqFHNGUKqnhWtnQxhhcmS-Cr01Y5Qj5Z-78K3f-mTtPudODk83arqjd8w__7pvA2QaYaE1VBtNYH3-d4sAkyuSO1847536upRQcOWcfK9uMrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511072162</pqid></control><display><type>article</type><title>Multimodal Similarity-Preserving Hashing</title><source>IEEE Electronic Library (IEL)</source><creator>Masci, Jonathan ; Bronstein, Michael M. ; Bronstein, Alexander M. ; Schmidhuber, Jürgen</creator><creatorcontrib>Masci, Jonathan ; Bronstein, Michael M. ; Bronstein, Alexander M. ; Schmidhuber, Jürgen</creatorcontrib><description>We introduce an efficient computational framework for hashing data belonging to multiple modalities into a single representation space where they become mutually comparable. The proposed approach is based on a novel coupled siamese neural network architecture and allows unified treatment of intra- and inter-modality similarity learning. Unlike existing cross-modality similarity learning approaches, our hashing functions are not limited to binarized linear projections and can assume arbitrarily complex forms. We show experimentally that our method significantly outperforms state-of-the-art hashing approaches on multimedia retrieval tasks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2013.225</identifier><identifier>PMID: 26353203</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Architecture (computers) ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Data processing. List processing. Character string processing ; Exact sciences and technology ; feature descriptor ; Information systems. Data bases ; Learning ; Mathematical analysis ; Measurement ; Memory organisation. Data processing ; metric learning ; Multimedia ; neural network ; Neural networks ; Nonlinear dynamics and nonlinear dynamical systems ; Optimization ; Physics ; Representations ; Similarity ; Similarity-sensitive hashing ; Software ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Synchronization ; coupled oscillators ; Tasks ; Training ; Vectors</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2014-04, Vol.36 (4), p.824-830</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1be4918e06caac5b55902b88626ca81bf134f6754093cb9424bb2415480c97e03</citedby><cites>FETCH-LOGICAL-c406t-1be4918e06caac5b55902b88626ca81bf134f6754093cb9424bb2415480c97e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6654144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6654144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28403616$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26353203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masci, Jonathan</creatorcontrib><creatorcontrib>Bronstein, Michael M.</creatorcontrib><creatorcontrib>Bronstein, Alexander M.</creatorcontrib><creatorcontrib>Schmidhuber, Jürgen</creatorcontrib><title>Multimodal Similarity-Preserving Hashing</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We introduce an efficient computational framework for hashing data belonging to multiple modalities into a single representation space where they become mutually comparable. The proposed approach is based on a novel coupled siamese neural network architecture and allows unified treatment of intra- and inter-modality similarity learning. Unlike existing cross-modality similarity learning approaches, our hashing functions are not limited to binarized linear projections and can assume arbitrarily complex forms. We show experimentally that our method significantly outperforms state-of-the-art hashing approaches on multimedia retrieval tasks.</description><subject>Applied sciences</subject><subject>Architecture (computers)</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>feature descriptor</subject><subject>Information systems. Data bases</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Memory organisation. Data processing</subject><subject>metric learning</subject><subject>Multimedia</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Nonlinear dynamics and nonlinear dynamical systems</subject><subject>Optimization</subject><subject>Physics</subject><subject>Representations</subject><subject>Similarity</subject><subject>Similarity-sensitive hashing</subject><subject>Software</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Synchronization ; coupled oscillators</subject><subject>Tasks</subject><subject>Training</subject><subject>Vectors</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0EtLAzEQwPEgitbq1YsgBRG8bJ3Jq8mxFB8Fi4J6XrIxqyn7qElX6Lc32qrgxdNA8stA_oQcIQwRQV883o9n0yEFZENKxRbpoWY6Y4LpbdIDlDRTiqo9sh_jHAC5ALZL9qhMggLrkfNZVy193T6bavDga1-Z4Jer7D646MK7b14GNya-pnlAdkpTRXe4mX3ydHX5OLnJbu-up5PxbWY5yGWGheMalQNpjbGiEEIDLZSSNB0oLEpkvJQjwUEzW2hOeVFQjoIrsHrkgPXJ-XrvIrRvnYvLvPbRuqoyjWu7mOMIUTAhQf1PBQOtqdY60dM_dN52oUkfSSqFHNGUKqnhWtnQxhhcmS-Cr01Y5Qj5Z-78K3f-mTtPudODk83arqjd8w__7pvA2QaYaE1VBtNYH3-d4sAkyuSO1847536upRQcOWcfK9uMrA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Masci, Jonathan</creator><creator>Bronstein, Michael M.</creator><creator>Bronstein, Alexander M.</creator><creator>Schmidhuber, Jürgen</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20140401</creationdate><title>Multimodal Similarity-Preserving Hashing</title><author>Masci, Jonathan ; Bronstein, Michael M. ; Bronstein, Alexander M. ; Schmidhuber, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1be4918e06caac5b55902b88626ca81bf134f6754093cb9424bb2415480c97e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Architecture (computers)</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>feature descriptor</topic><topic>Information systems. Data bases</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Memory organisation. Data processing</topic><topic>metric learning</topic><topic>Multimedia</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Nonlinear dynamics and nonlinear dynamical systems</topic><topic>Optimization</topic><topic>Physics</topic><topic>Representations</topic><topic>Similarity</topic><topic>Similarity-sensitive hashing</topic><topic>Software</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Synchronization ; coupled oscillators</topic><topic>Tasks</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masci, Jonathan</creatorcontrib><creatorcontrib>Bronstein, Michael M.</creatorcontrib><creatorcontrib>Bronstein, Alexander M.</creatorcontrib><creatorcontrib>Schmidhuber, Jürgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Masci, Jonathan</au><au>Bronstein, Michael M.</au><au>Bronstein, Alexander M.</au><au>Schmidhuber, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Similarity-Preserving Hashing</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>36</volume><issue>4</issue><spage>824</spage><epage>830</epage><pages>824-830</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We introduce an efficient computational framework for hashing data belonging to multiple modalities into a single representation space where they become mutually comparable. The proposed approach is based on a novel coupled siamese neural network architecture and allows unified treatment of intra- and inter-modality similarity learning. Unlike existing cross-modality similarity learning approaches, our hashing functions are not limited to binarized linear projections and can assume arbitrarily complex forms. We show experimentally that our method significantly outperforms state-of-the-art hashing approaches on multimedia retrieval tasks.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>26353203</pmid><doi>10.1109/TPAMI.2013.225</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2014-04, Vol.36 (4), p.824-830
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_26353203
source IEEE Electronic Library (IEL)
subjects Applied sciences
Architecture (computers)
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Data processing. List processing. Character string processing
Exact sciences and technology
feature descriptor
Information systems. Data bases
Learning
Mathematical analysis
Measurement
Memory organisation. Data processing
metric learning
Multimedia
neural network
Neural networks
Nonlinear dynamics and nonlinear dynamical systems
Optimization
Physics
Representations
Similarity
Similarity-sensitive hashing
Software
Statistical physics, thermodynamics, and nonlinear dynamical systems
Synchronization
coupled oscillators
Tasks
Training
Vectors
title Multimodal Similarity-Preserving Hashing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Similarity-Preserving%20Hashing&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Masci,%20Jonathan&rft.date=2014-04-01&rft.volume=36&rft.issue=4&rft.spage=824&rft.epage=830&rft.pages=824-830&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2013.225&rft_dat=%3Cproquest_RIE%3E1711535608%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511072162&rft_id=info:pmid/26353203&rft_ieee_id=6654144&rfr_iscdi=true