Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy

We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S 11 reflection measurements. Using a three error parameters de-embedding workflow, the S 11 raw data are converted into calibrated capacitance and resistance i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-09, Vol.7 (35), p.14715-14722
Hauptverfasser: Brinciotti, Enrico, Gramse, Georg, Hommel, Soeren, Schweinboeck, Thomas, Altes, Andreas, Fenner, Matthias A, Smoliner, Juergen, Kasper, Manuel, Badino, Giorgio, Tuca, Silviu-Sorin, Kienberger, Ferry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14722
container_issue 35
container_start_page 14715
container_title Nanoscale
container_volume 7
creator Brinciotti, Enrico
Gramse, Georg
Hommel, Soeren
Schweinboeck, Thomas
Altes, Andreas
Fenner, Matthias A
Smoliner, Juergen
Kasper, Manuel
Badino, Giorgio
Tuca, Silviu-Sorin
Kienberger, Ferry
description We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S 11 reflection measurements. Using a three error parameters de-embedding workflow, the S 11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10 −3 Ω cm to 10 1 Ω cm, and 10 14 atoms per cm 3 to 10 20 atoms per cm 3 , respectively. The measured dopant density values, with related uncertainties, are [1.1 ± 0.6] × 10 18 atoms per cm 3 , [2.2 ± 0.4] × 10 17 atoms per cm 3 , [4.5 ± 0.2] × 10 16 atoms per cm 3 , [4.5 ± 1.3] × 10 15 atoms per cm 3 , [4.5 ± 1.7] × 10 14 atoms per cm 3 . The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations. A new method to probe the resistivity and dopant concentration of semiconductors with nanoscale resolution using SMM is presented.
doi_str_mv 10.1039/c5nr04264j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26282633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1708161464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-189f76056d6f429662334e304307c5f281edaeae324655a1f9b3d37052434b843</originalsourceid><addsrcrecordid>eNqNkd1LwzAUxYMobk5ffFfimwjVJDdN20cZfjJURJ9Llqba0SU1SSf7723dnG_i0z2c-7sHLgehQ0rOKYHsQsXGEc4En22hISOcRAAJ295owQdoz_sZISIDAbtowARLmQAYIv_k7LQyb9hpX_lQLaqwxNIUuLBNbytrlDbByVBZg22JvZ5XnVm0KljnsQw4vGtspLFeyVrj1vdnnTamFx3s7Kdc6JXyyjbLfbRTytrrg_Ucodfrq5fxbTR5vLkbX04ixRMSIppmZSJILApRcpYJwQC4BsKBJCouWUp1IbXUwLiIY0nLbAoFJCRmHPg05TBCp6vcxtmPVvuQzyuvdF1Lo23rc5pwnlCasfQfKEmpoFz0qWcrtH_HO13mjavm0i1zSvK-j3wcPzx_93Hfwcfr3HY618UG_SmgA05WgPNqs_0tNG-KsmOO_mLgC7nanBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708161464</pqid></control><display><type>article</type><title>Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Brinciotti, Enrico ; Gramse, Georg ; Hommel, Soeren ; Schweinboeck, Thomas ; Altes, Andreas ; Fenner, Matthias A ; Smoliner, Juergen ; Kasper, Manuel ; Badino, Giorgio ; Tuca, Silviu-Sorin ; Kienberger, Ferry</creator><creatorcontrib>Brinciotti, Enrico ; Gramse, Georg ; Hommel, Soeren ; Schweinboeck, Thomas ; Altes, Andreas ; Fenner, Matthias A ; Smoliner, Juergen ; Kasper, Manuel ; Badino, Giorgio ; Tuca, Silviu-Sorin ; Kienberger, Ferry</creatorcontrib><description>We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S 11 reflection measurements. Using a three error parameters de-embedding workflow, the S 11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10 −3 Ω cm to 10 1 Ω cm, and 10 14 atoms per cm 3 to 10 20 atoms per cm 3 , respectively. The measured dopant density values, with related uncertainties, are [1.1 ± 0.6] × 10 18 atoms per cm 3 , [2.2 ± 0.4] × 10 17 atoms per cm 3 , [4.5 ± 0.2] × 10 16 atoms per cm 3 , [4.5 ± 1.3] × 10 15 atoms per cm 3 , [4.5 ± 1.7] × 10 14 atoms per cm 3 . The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations. A new method to probe the resistivity and dopant concentration of semiconductors with nanoscale resolution using SMM is presented.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr04264j</identifier><identifier>PMID: 26282633</identifier><language>eng</language><publisher>England</publisher><subject>Calibration ; Capacitance ; Doping ; Electrical resistivity ; Microscopy ; Microwaves ; Nanostructure ; Semiconductors</subject><ispartof>Nanoscale, 2015-09, Vol.7 (35), p.14715-14722</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-189f76056d6f429662334e304307c5f281edaeae324655a1f9b3d37052434b843</citedby><cites>FETCH-LOGICAL-c470t-189f76056d6f429662334e304307c5f281edaeae324655a1f9b3d37052434b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26282633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brinciotti, Enrico</creatorcontrib><creatorcontrib>Gramse, Georg</creatorcontrib><creatorcontrib>Hommel, Soeren</creatorcontrib><creatorcontrib>Schweinboeck, Thomas</creatorcontrib><creatorcontrib>Altes, Andreas</creatorcontrib><creatorcontrib>Fenner, Matthias A</creatorcontrib><creatorcontrib>Smoliner, Juergen</creatorcontrib><creatorcontrib>Kasper, Manuel</creatorcontrib><creatorcontrib>Badino, Giorgio</creatorcontrib><creatorcontrib>Tuca, Silviu-Sorin</creatorcontrib><creatorcontrib>Kienberger, Ferry</creatorcontrib><title>Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S 11 reflection measurements. Using a three error parameters de-embedding workflow, the S 11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10 −3 Ω cm to 10 1 Ω cm, and 10 14 atoms per cm 3 to 10 20 atoms per cm 3 , respectively. The measured dopant density values, with related uncertainties, are [1.1 ± 0.6] × 10 18 atoms per cm 3 , [2.2 ± 0.4] × 10 17 atoms per cm 3 , [4.5 ± 0.2] × 10 16 atoms per cm 3 , [4.5 ± 1.3] × 10 15 atoms per cm 3 , [4.5 ± 1.7] × 10 14 atoms per cm 3 . The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations. A new method to probe the resistivity and dopant concentration of semiconductors with nanoscale resolution using SMM is presented.</description><subject>Calibration</subject><subject>Capacitance</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Microscopy</subject><subject>Microwaves</subject><subject>Nanostructure</subject><subject>Semiconductors</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkd1LwzAUxYMobk5ffFfimwjVJDdN20cZfjJURJ9Llqba0SU1SSf7723dnG_i0z2c-7sHLgehQ0rOKYHsQsXGEc4En22hISOcRAAJ295owQdoz_sZISIDAbtowARLmQAYIv_k7LQyb9hpX_lQLaqwxNIUuLBNbytrlDbByVBZg22JvZ5XnVm0KljnsQw4vGtspLFeyVrj1vdnnTamFx3s7Kdc6JXyyjbLfbRTytrrg_Ucodfrq5fxbTR5vLkbX04ixRMSIppmZSJILApRcpYJwQC4BsKBJCouWUp1IbXUwLiIY0nLbAoFJCRmHPg05TBCp6vcxtmPVvuQzyuvdF1Lo23rc5pwnlCasfQfKEmpoFz0qWcrtH_HO13mjavm0i1zSvK-j3wcPzx_93Hfwcfr3HY618UG_SmgA05WgPNqs_0tNG-KsmOO_mLgC7nanBY</recordid><startdate>20150921</startdate><enddate>20150921</enddate><creator>Brinciotti, Enrico</creator><creator>Gramse, Georg</creator><creator>Hommel, Soeren</creator><creator>Schweinboeck, Thomas</creator><creator>Altes, Andreas</creator><creator>Fenner, Matthias A</creator><creator>Smoliner, Juergen</creator><creator>Kasper, Manuel</creator><creator>Badino, Giorgio</creator><creator>Tuca, Silviu-Sorin</creator><creator>Kienberger, Ferry</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150921</creationdate><title>Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy</title><author>Brinciotti, Enrico ; Gramse, Georg ; Hommel, Soeren ; Schweinboeck, Thomas ; Altes, Andreas ; Fenner, Matthias A ; Smoliner, Juergen ; Kasper, Manuel ; Badino, Giorgio ; Tuca, Silviu-Sorin ; Kienberger, Ferry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-189f76056d6f429662334e304307c5f281edaeae324655a1f9b3d37052434b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calibration</topic><topic>Capacitance</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Microscopy</topic><topic>Microwaves</topic><topic>Nanostructure</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brinciotti, Enrico</creatorcontrib><creatorcontrib>Gramse, Georg</creatorcontrib><creatorcontrib>Hommel, Soeren</creatorcontrib><creatorcontrib>Schweinboeck, Thomas</creatorcontrib><creatorcontrib>Altes, Andreas</creatorcontrib><creatorcontrib>Fenner, Matthias A</creatorcontrib><creatorcontrib>Smoliner, Juergen</creatorcontrib><creatorcontrib>Kasper, Manuel</creatorcontrib><creatorcontrib>Badino, Giorgio</creatorcontrib><creatorcontrib>Tuca, Silviu-Sorin</creatorcontrib><creatorcontrib>Kienberger, Ferry</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brinciotti, Enrico</au><au>Gramse, Georg</au><au>Hommel, Soeren</au><au>Schweinboeck, Thomas</au><au>Altes, Andreas</au><au>Fenner, Matthias A</au><au>Smoliner, Juergen</au><au>Kasper, Manuel</au><au>Badino, Giorgio</au><au>Tuca, Silviu-Sorin</au><au>Kienberger, Ferry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-09-21</date><risdate>2015</risdate><volume>7</volume><issue>35</issue><spage>14715</spage><epage>14722</epage><pages>14715-14722</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S 11 reflection measurements. Using a three error parameters de-embedding workflow, the S 11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10 −3 Ω cm to 10 1 Ω cm, and 10 14 atoms per cm 3 to 10 20 atoms per cm 3 , respectively. The measured dopant density values, with related uncertainties, are [1.1 ± 0.6] × 10 18 atoms per cm 3 , [2.2 ± 0.4] × 10 17 atoms per cm 3 , [4.5 ± 0.2] × 10 16 atoms per cm 3 , [4.5 ± 1.3] × 10 15 atoms per cm 3 , [4.5 ± 1.7] × 10 14 atoms per cm 3 . The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations. A new method to probe the resistivity and dopant concentration of semiconductors with nanoscale resolution using SMM is presented.</abstract><cop>England</cop><pmid>26282633</pmid><doi>10.1039/c5nr04264j</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2015-09, Vol.7 (35), p.14715-14722
issn 2040-3364
2040-3372
language eng
recordid cdi_pubmed_primary_26282633
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Calibration
Capacitance
Doping
Electrical resistivity
Microscopy
Microwaves
Nanostructure
Semiconductors
title Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20resistivity%20and%20doping%20concentration%20of%20semiconductors%20at%20the%20nanoscale%20using%20scanning%20microwave%20microscopy&rft.jtitle=Nanoscale&rft.au=Brinciotti,%20Enrico&rft.date=2015-09-21&rft.volume=7&rft.issue=35&rft.spage=14715&rft.epage=14722&rft.pages=14715-14722&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr04264j&rft_dat=%3Cproquest_pubme%3E1708161464%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708161464&rft_id=info:pmid/26282633&rfr_iscdi=true