All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers

We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2015-09, Vol.15 (18), p.38-386
Hauptverfasser: Wienhold, T, Kraemmer, S, Wondimu, S. F, Siegle, T, Bog, U, Weinzierl, U, Schmidt, S, Becker, H, Kalt, H, Mappes, T, Koeber, S, Koos, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 18
container_start_page 38
container_title Lab on a chip
container_volume 15
creator Wienhold, T
Kraemmer, S
Wondimu, S. F
Siegle, T
Bog, U
Weinzierl, U
Schmidt, S
Becker, H
Kalt, H
Mappes, T
Koeber, S
Koos, C
description We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10 5 and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid resonators, this approach replaces technically demanding vacuum-based dry etching and serial laser-based reflow techniques by solution-based processing and parallel thermal reflow. This enables scaling to large-area substrates, and hence significantly reduces device costs. Moreover, the resonators can be fabricated on arbitrary substrate materials, e.g. , on transparent and flexible polymer foils. Doping the microgoblets with the organic dye pyrromethene 597 transforms the passive resonators into lasers. Devices have lasing thresholds below 0.6 nJ per pulse and can be efficiently pumped via free-space optics using a compact and low-cost green laser diode. We demonstrate that arrays of microgoblet lasers can be readily integrated into a state-of-the-art microfluidic chip replicated via injection moulding. In a proof-of-principle experiment, we show the viability of the lab-on-a-chip via refractometric sensing, demonstrating a bulk refractive index sensitivity (BRIS) of 10.56 nm per refractive index unit. We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip.
doi_str_mv 10.1039/c5lc00670h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26266577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1707556751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-9543787258f53415ff4375dbff39aa2d7ee1dd288d69849b0ddda159c4029fb33</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AgipvTi3cl3kSoJm1-NMdR1AkDL3rwVNIm2SppU5MO2X9v5ua8iae88D7vQb4B4ByjW4wycVdTWyPEOFoegDEmPEsQzsXhvhZ8BE5CeEcIU8LyYzBKWcoY5XwM3qbWJr2z61Z72C_d4LqmhkF3oekWsLdyMM63sJJBK-g6-LlsQq99bCYLaa32a9g6pWHb1N4tXGX1AG3EPpyCIyNt0Ge7cwJeH-5filkyf358KqbzpCaIDImgJOM5T2luaEYwNSbeqaqMyYSUqeJaY6XSPFdM5ERUSCklMRVxOhWmyrIJuN7u7b37WOkwlG0Tam2t7LRbhRJzQjhiucD_oIhTyjjd0Jstjc8KwWtT9r5ppV-XGJWb1MuCzovv1GcRX-72rqpWqz39iTmCqy3wod53f7-t7JWJ5uIvk30BzKySsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707556751</pqid></control><display><type>article</type><title>All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wienhold, T ; Kraemmer, S ; Wondimu, S. F ; Siegle, T ; Bog, U ; Weinzierl, U ; Schmidt, S ; Becker, H ; Kalt, H ; Mappes, T ; Koeber, S ; Koos, C</creator><creatorcontrib>Wienhold, T ; Kraemmer, S ; Wondimu, S. F ; Siegle, T ; Bog, U ; Weinzierl, U ; Schmidt, S ; Becker, H ; Kalt, H ; Mappes, T ; Koeber, S ; Koos, C</creatorcontrib><description>We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10 5 and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid resonators, this approach replaces technically demanding vacuum-based dry etching and serial laser-based reflow techniques by solution-based processing and parallel thermal reflow. This enables scaling to large-area substrates, and hence significantly reduces device costs. Moreover, the resonators can be fabricated on arbitrary substrate materials, e.g. , on transparent and flexible polymer foils. Doping the microgoblets with the organic dye pyrromethene 597 transforms the passive resonators into lasers. Devices have lasing thresholds below 0.6 nJ per pulse and can be efficiently pumped via free-space optics using a compact and low-cost green laser diode. We demonstrate that arrays of microgoblet lasers can be readily integrated into a state-of-the-art microfluidic chip replicated via injection moulding. In a proof-of-principle experiment, we show the viability of the lab-on-a-chip via refractometric sensing, demonstrating a bulk refractive index sensitivity (BRIS) of 10.56 nm per refractive index unit. We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c5lc00670h</identifier><identifier>PMID: 26266577</identifier><language>eng</language><publisher>England</publisher><subject>Chips ; Detection ; Devices ; Lasers ; Microfluidics ; Photonics ; Polymethyl methacrylates ; Resonators</subject><ispartof>Lab on a chip, 2015-09, Vol.15 (18), p.38-386</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-9543787258f53415ff4375dbff39aa2d7ee1dd288d69849b0ddda159c4029fb33</citedby><cites>FETCH-LOGICAL-c404t-9543787258f53415ff4375dbff39aa2d7ee1dd288d69849b0ddda159c4029fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26266577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wienhold, T</creatorcontrib><creatorcontrib>Kraemmer, S</creatorcontrib><creatorcontrib>Wondimu, S. F</creatorcontrib><creatorcontrib>Siegle, T</creatorcontrib><creatorcontrib>Bog, U</creatorcontrib><creatorcontrib>Weinzierl, U</creatorcontrib><creatorcontrib>Schmidt, S</creatorcontrib><creatorcontrib>Becker, H</creatorcontrib><creatorcontrib>Kalt, H</creatorcontrib><creatorcontrib>Mappes, T</creatorcontrib><creatorcontrib>Koeber, S</creatorcontrib><creatorcontrib>Koos, C</creatorcontrib><title>All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10 5 and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid resonators, this approach replaces technically demanding vacuum-based dry etching and serial laser-based reflow techniques by solution-based processing and parallel thermal reflow. This enables scaling to large-area substrates, and hence significantly reduces device costs. Moreover, the resonators can be fabricated on arbitrary substrate materials, e.g. , on transparent and flexible polymer foils. Doping the microgoblets with the organic dye pyrromethene 597 transforms the passive resonators into lasers. Devices have lasing thresholds below 0.6 nJ per pulse and can be efficiently pumped via free-space optics using a compact and low-cost green laser diode. We demonstrate that arrays of microgoblet lasers can be readily integrated into a state-of-the-art microfluidic chip replicated via injection moulding. In a proof-of-principle experiment, we show the viability of the lab-on-a-chip via refractometric sensing, demonstrating a bulk refractive index sensitivity (BRIS) of 10.56 nm per refractive index unit. We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip.</description><subject>Chips</subject><subject>Detection</subject><subject>Devices</subject><subject>Lasers</subject><subject>Microfluidics</subject><subject>Photonics</subject><subject>Polymethyl methacrylates</subject><subject>Resonators</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0c9LwzAUB_AgipvTi3cl3kSoJm1-NMdR1AkDL3rwVNIm2SppU5MO2X9v5ua8iae88D7vQb4B4ByjW4wycVdTWyPEOFoegDEmPEsQzsXhvhZ8BE5CeEcIU8LyYzBKWcoY5XwM3qbWJr2z61Z72C_d4LqmhkF3oekWsLdyMM63sJJBK-g6-LlsQq99bCYLaa32a9g6pWHb1N4tXGX1AG3EPpyCIyNt0Ge7cwJeH-5filkyf358KqbzpCaIDImgJOM5T2luaEYwNSbeqaqMyYSUqeJaY6XSPFdM5ERUSCklMRVxOhWmyrIJuN7u7b37WOkwlG0Tam2t7LRbhRJzQjhiucD_oIhTyjjd0Jstjc8KwWtT9r5ppV-XGJWb1MuCzovv1GcRX-72rqpWqz39iTmCqy3wod53f7-t7JWJ5uIvk30BzKySsg</recordid><startdate>20150921</startdate><enddate>20150921</enddate><creator>Wienhold, T</creator><creator>Kraemmer, S</creator><creator>Wondimu, S. F</creator><creator>Siegle, T</creator><creator>Bog, U</creator><creator>Weinzierl, U</creator><creator>Schmidt, S</creator><creator>Becker, H</creator><creator>Kalt, H</creator><creator>Mappes, T</creator><creator>Koeber, S</creator><creator>Koos, C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150921</creationdate><title>All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers</title><author>Wienhold, T ; Kraemmer, S ; Wondimu, S. F ; Siegle, T ; Bog, U ; Weinzierl, U ; Schmidt, S ; Becker, H ; Kalt, H ; Mappes, T ; Koeber, S ; Koos, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-9543787258f53415ff4375dbff39aa2d7ee1dd288d69849b0ddda159c4029fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chips</topic><topic>Detection</topic><topic>Devices</topic><topic>Lasers</topic><topic>Microfluidics</topic><topic>Photonics</topic><topic>Polymethyl methacrylates</topic><topic>Resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wienhold, T</creatorcontrib><creatorcontrib>Kraemmer, S</creatorcontrib><creatorcontrib>Wondimu, S. F</creatorcontrib><creatorcontrib>Siegle, T</creatorcontrib><creatorcontrib>Bog, U</creatorcontrib><creatorcontrib>Weinzierl, U</creatorcontrib><creatorcontrib>Schmidt, S</creatorcontrib><creatorcontrib>Becker, H</creatorcontrib><creatorcontrib>Kalt, H</creatorcontrib><creatorcontrib>Mappes, T</creatorcontrib><creatorcontrib>Koeber, S</creatorcontrib><creatorcontrib>Koos, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wienhold, T</au><au>Kraemmer, S</au><au>Wondimu, S. F</au><au>Siegle, T</au><au>Bog, U</au><au>Weinzierl, U</au><au>Schmidt, S</au><au>Becker, H</au><au>Kalt, H</au><au>Mappes, T</au><au>Koeber, S</au><au>Koos, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2015-09-21</date><risdate>2015</risdate><volume>15</volume><issue>18</issue><spage>38</spage><epage>386</epage><pages>38-386</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 10 5 and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid resonators, this approach replaces technically demanding vacuum-based dry etching and serial laser-based reflow techniques by solution-based processing and parallel thermal reflow. This enables scaling to large-area substrates, and hence significantly reduces device costs. Moreover, the resonators can be fabricated on arbitrary substrate materials, e.g. , on transparent and flexible polymer foils. Doping the microgoblets with the organic dye pyrromethene 597 transforms the passive resonators into lasers. Devices have lasing thresholds below 0.6 nJ per pulse and can be efficiently pumped via free-space optics using a compact and low-cost green laser diode. We demonstrate that arrays of microgoblet lasers can be readily integrated into a state-of-the-art microfluidic chip replicated via injection moulding. In a proof-of-principle experiment, we show the viability of the lab-on-a-chip via refractometric sensing, demonstrating a bulk refractive index sensitivity (BRIS) of 10.56 nm per refractive index unit. We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip.</abstract><cop>England</cop><pmid>26266577</pmid><doi>10.1039/c5lc00670h</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2015-09, Vol.15 (18), p.38-386
issn 1473-0197
1473-0189
language eng
recordid cdi_pubmed_primary_26266577
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chips
Detection
Devices
Lasers
Microfluidics
Photonics
Polymethyl methacrylates
Resonators
title All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-polymer%20photonic%20sensing%20platform%20based%20on%20whispering-gallery%20mode%20microgoblet%20lasers&rft.jtitle=Lab%20on%20a%20chip&rft.au=Wienhold,%20T&rft.date=2015-09-21&rft.volume=15&rft.issue=18&rft.spage=38&rft.epage=386&rft.pages=38-386&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c5lc00670h&rft_dat=%3Cproquest_pubme%3E1707556751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707556751&rft_id=info:pmid/26266577&rfr_iscdi=true