Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles

Photoacoustic imaging is an emerging technique which inherits the merits of optical imaging and ultrasonic imaging. However, classical photoacoustic imaging mainly makes use of the time-domain parameters of signals. In contrast to previous studies, we theoretically investigate the spectral character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2015-07, Vol.62 (7), p.1245-1255
Hauptverfasser: Wang, Shaohua, Tao, Chao, Yang, Yiqun, Wang, Xueding, Liu, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoacoustic imaging is an emerging technique which inherits the merits of optical imaging and ultrasonic imaging. However, classical photoacoustic imaging mainly makes use of the time-domain parameters of signals. In contrast to previous studies, we theoretically investigate the spectral characteristics of the photoacoustic signal from stochastic distributed particles. The spectral slope is extracted and used for describing the spectral characteristics of the photoacoustic signal. Both Gaussian and spherical distributions of optical absorption in particles are considered. For both situations, the spectral slope is monotonically decreased with the increase of particle size. In addition, the quantitative relationship between the spectral slope and the imaging system factors, including the laser pulse envelope, directivity of ultrasound transducer, and signal bandwidth, are theoretically analyzed. Finally, an idealized phantom experiment is performed to validate the analyses and examine the instrument independent of the spectral slope. This work provides a theoretical framework and new experimental evidence for spectrum analysis of the photoacoustic signal. This could be helpful for quantitative tissue evaluation and imaging based on the spectral parameters of the photoacoustic signal.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2014.006806