Controlling legs for locomotion-insights from robotics and neurobiology
Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing b...
Gespeichert in:
Veröffentlicht in: | Bioinspiration & biomimetics 2015-06, Vol.10 (4), p.041001-38 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 4 |
container_start_page | 041001 |
container_title | Bioinspiration & biomimetics |
container_volume | 10 |
creator | Buschmann, Thomas Ewald, Alexander Twickel, Arndt von Büschges, Ansgar |
description | Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps. |
doi_str_mv | 10.1088/1748-3190/10/4/041001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26119450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859476433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-e9f2819098860682f55753d1def90a3e666e264ebe9521e4bef9e4e20ce4eef83</originalsourceid><addsrcrecordid>eNqNkU9PxCAQxYnRuOvqR9D0ZLzUAgUKR7PR1cTEi55J_0xrN22p0B7220vTdePBqBdgXn7zhsxD6JLgW4KljEjCZBgThSOCIxZhRjAmR2h50I8Pb0kX6My5LcacKUlP0YIKQhTjeIk2a9MN1jRN3VVBA5ULSmODxuSmNUNturDuXF29D163pg2sybycuyDtiqCD0de1aUy1O0cnZdo4uNjfK_T2cP-6fgyfXzZP67vnMOeEDSGokkr_OSWlwELSkvOExwUpoFQ4jUEIAVQwyEBxSoBlXgcGFOf-hFLGK3Qz-_bWfIzgBt3WLoemSTswo9NEcsUSweL4HyjGjPNYJH-jQlGqaCInVz6juTXOWSh1b-s2tTtNsJ6S0dPW9ZTApDA9J-P7rvYjxqyF4tD1FYUHrmegNr3emtF2fo86y7676L4oPUh-AH-f_glPE6Oo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692292783</pqid></control><display><type>article</type><title>Controlling legs for locomotion-insights from robotics and neurobiology</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Buschmann, Thomas ; Ewald, Alexander ; Twickel, Arndt von ; Büschges, Ansgar</creator><creatorcontrib>Buschmann, Thomas ; Ewald, Alexander ; Twickel, Arndt von ; Büschges, Ansgar</creatorcontrib><description>Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.</description><identifier>ISSN: 1748-3182</identifier><identifier>ISSN: 1748-3190</identifier><identifier>EISSN: 1748-3190</identifier><identifier>DOI: 10.1088/1748-3190/10/4/041001</identifier><identifier>PMID: 26119450</identifier><identifier>CODEN: BBIICI</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Biology ; Biomimetics - instrumentation ; Biomimetics - methods ; Controllers ; Equipment Design ; Equipment Failure Analysis ; Feedback ; Feedback, Physiological - physiology ; Flexibility ; Humans ; Leg - physiology ; Locomotion ; Locomotion - physiology ; Models, Neurological ; Muscle Contraction - physiology ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; neural control ; Neurobiology - methods ; Robotics ; Robotics - instrumentation ; Robotics - methods ; Robots ; Walking ; walking control ; walking pattern generation</subject><ispartof>Bioinspiration & biomimetics, 2015-06, Vol.10 (4), p.041001-38</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-e9f2819098860682f55753d1def90a3e666e264ebe9521e4bef9e4e20ce4eef83</citedby><cites>FETCH-LOGICAL-c514t-e9f2819098860682f55753d1def90a3e666e264ebe9521e4bef9e4e20ce4eef83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-3190/10/4/041001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26119450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buschmann, Thomas</creatorcontrib><creatorcontrib>Ewald, Alexander</creatorcontrib><creatorcontrib>Twickel, Arndt von</creatorcontrib><creatorcontrib>Büschges, Ansgar</creatorcontrib><title>Controlling legs for locomotion-insights from robotics and neurobiology</title><title>Bioinspiration & biomimetics</title><addtitle>BB</addtitle><addtitle>Bioinspir. Biomim</addtitle><description>Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.</description><subject>Animals</subject><subject>Biology</subject><subject>Biomimetics - instrumentation</subject><subject>Biomimetics - methods</subject><subject>Controllers</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Feedback</subject><subject>Feedback, Physiological - physiology</subject><subject>Flexibility</subject><subject>Humans</subject><subject>Leg - physiology</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>Models, Neurological</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>neural control</subject><subject>Neurobiology - methods</subject><subject>Robotics</subject><subject>Robotics - instrumentation</subject><subject>Robotics - methods</subject><subject>Robots</subject><subject>Walking</subject><subject>walking control</subject><subject>walking pattern generation</subject><issn>1748-3182</issn><issn>1748-3190</issn><issn>1748-3190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9PxCAQxYnRuOvqR9D0ZLzUAgUKR7PR1cTEi55J_0xrN22p0B7220vTdePBqBdgXn7zhsxD6JLgW4KljEjCZBgThSOCIxZhRjAmR2h50I8Pb0kX6My5LcacKUlP0YIKQhTjeIk2a9MN1jRN3VVBA5ULSmODxuSmNUNturDuXF29D163pg2sybycuyDtiqCD0de1aUy1O0cnZdo4uNjfK_T2cP-6fgyfXzZP67vnMOeEDSGokkr_OSWlwELSkvOExwUpoFQ4jUEIAVQwyEBxSoBlXgcGFOf-hFLGK3Qz-_bWfIzgBt3WLoemSTswo9NEcsUSweL4HyjGjPNYJH-jQlGqaCInVz6juTXOWSh1b-s2tTtNsJ6S0dPW9ZTApDA9J-P7rvYjxqyF4tD1FYUHrmegNr3emtF2fo86y7676L4oPUh-AH-f_glPE6Oo</recordid><startdate>20150629</startdate><enddate>20150629</enddate><creator>Buschmann, Thomas</creator><creator>Ewald, Alexander</creator><creator>Twickel, Arndt von</creator><creator>Büschges, Ansgar</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7TK</scope></search><sort><creationdate>20150629</creationdate><title>Controlling legs for locomotion-insights from robotics and neurobiology</title><author>Buschmann, Thomas ; Ewald, Alexander ; Twickel, Arndt von ; Büschges, Ansgar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-e9f2819098860682f55753d1def90a3e666e264ebe9521e4bef9e4e20ce4eef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Biomimetics - instrumentation</topic><topic>Biomimetics - methods</topic><topic>Controllers</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Feedback</topic><topic>Feedback, Physiological - physiology</topic><topic>Flexibility</topic><topic>Humans</topic><topic>Leg - physiology</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>Models, Neurological</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>neural control</topic><topic>Neurobiology - methods</topic><topic>Robotics</topic><topic>Robotics - instrumentation</topic><topic>Robotics - methods</topic><topic>Robots</topic><topic>Walking</topic><topic>walking control</topic><topic>walking pattern generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buschmann, Thomas</creatorcontrib><creatorcontrib>Ewald, Alexander</creatorcontrib><creatorcontrib>Twickel, Arndt von</creatorcontrib><creatorcontrib>Büschges, Ansgar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Neurosciences Abstracts</collection><jtitle>Bioinspiration & biomimetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buschmann, Thomas</au><au>Ewald, Alexander</au><au>Twickel, Arndt von</au><au>Büschges, Ansgar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling legs for locomotion-insights from robotics and neurobiology</atitle><jtitle>Bioinspiration & biomimetics</jtitle><stitle>BB</stitle><addtitle>Bioinspir. Biomim</addtitle><date>2015-06-29</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>041001</spage><epage>38</epage><pages>041001-38</pages><issn>1748-3182</issn><issn>1748-3190</issn><eissn>1748-3190</eissn><coden>BBIICI</coden><abstract>Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>26119450</pmid><doi>10.1088/1748-3190/10/4/041001</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3182 |
ispartof | Bioinspiration & biomimetics, 2015-06, Vol.10 (4), p.041001-38 |
issn | 1748-3182 1748-3190 1748-3190 |
language | eng |
recordid | cdi_pubmed_primary_26119450 |
source | Institute of Physics Journals; MEDLINE |
subjects | Animals Biology Biomimetics - instrumentation Biomimetics - methods Controllers Equipment Design Equipment Failure Analysis Feedback Feedback, Physiological - physiology Flexibility Humans Leg - physiology Locomotion Locomotion - physiology Models, Neurological Muscle Contraction - physiology Muscle, Skeletal - innervation Muscle, Skeletal - physiology neural control Neurobiology - methods Robotics Robotics - instrumentation Robotics - methods Robots Walking walking control walking pattern generation |
title | Controlling legs for locomotion-insights from robotics and neurobiology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20legs%20for%20locomotion-insights%20from%20robotics%20and%20neurobiology&rft.jtitle=Bioinspiration%20&%20biomimetics&rft.au=Buschmann,%20Thomas&rft.date=2015-06-29&rft.volume=10&rft.issue=4&rft.spage=041001&rft.epage=38&rft.pages=041001-38&rft.issn=1748-3182&rft.eissn=1748-3190&rft.coden=BBIICI&rft_id=info:doi/10.1088/1748-3190/10/4/041001&rft_dat=%3Cproquest_pubme%3E1859476433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692292783&rft_id=info:pmid/26119450&rfr_iscdi=true |