Controlling legs for locomotion-insights from robotics and neurobiology

Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinspiration & biomimetics 2015-06, Vol.10 (4), p.041001-38
Hauptverfasser: Buschmann, Thomas, Ewald, Alexander, Twickel, Arndt von, Büschges, Ansgar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 4
container_start_page 041001
container_title Bioinspiration & biomimetics
container_volume 10
creator Buschmann, Thomas
Ewald, Alexander
Twickel, Arndt von
Büschges, Ansgar
description Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.
doi_str_mv 10.1088/1748-3190/10/4/041001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26119450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859476433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-e9f2819098860682f55753d1def90a3e666e264ebe9521e4bef9e4e20ce4eef83</originalsourceid><addsrcrecordid>eNqNkU9PxCAQxYnRuOvqR9D0ZLzUAgUKR7PR1cTEi55J_0xrN22p0B7220vTdePBqBdgXn7zhsxD6JLgW4KljEjCZBgThSOCIxZhRjAmR2h50I8Pb0kX6My5LcacKUlP0YIKQhTjeIk2a9MN1jRN3VVBA5ULSmODxuSmNUNturDuXF29D163pg2sybycuyDtiqCD0de1aUy1O0cnZdo4uNjfK_T2cP-6fgyfXzZP67vnMOeEDSGokkr_OSWlwELSkvOExwUpoFQ4jUEIAVQwyEBxSoBlXgcGFOf-hFLGK3Qz-_bWfIzgBt3WLoemSTswo9NEcsUSweL4HyjGjPNYJH-jQlGqaCInVz6juTXOWSh1b-s2tTtNsJ6S0dPW9ZTApDA9J-P7rvYjxqyF4tD1FYUHrmegNr3emtF2fo86y7676L4oPUh-AH-f_glPE6Oo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692292783</pqid></control><display><type>article</type><title>Controlling legs for locomotion-insights from robotics and neurobiology</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Buschmann, Thomas ; Ewald, Alexander ; Twickel, Arndt von ; Büschges, Ansgar</creator><creatorcontrib>Buschmann, Thomas ; Ewald, Alexander ; Twickel, Arndt von ; Büschges, Ansgar</creatorcontrib><description>Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.</description><identifier>ISSN: 1748-3182</identifier><identifier>ISSN: 1748-3190</identifier><identifier>EISSN: 1748-3190</identifier><identifier>DOI: 10.1088/1748-3190/10/4/041001</identifier><identifier>PMID: 26119450</identifier><identifier>CODEN: BBIICI</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Biology ; Biomimetics - instrumentation ; Biomimetics - methods ; Controllers ; Equipment Design ; Equipment Failure Analysis ; Feedback ; Feedback, Physiological - physiology ; Flexibility ; Humans ; Leg - physiology ; Locomotion ; Locomotion - physiology ; Models, Neurological ; Muscle Contraction - physiology ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; neural control ; Neurobiology - methods ; Robotics ; Robotics - instrumentation ; Robotics - methods ; Robots ; Walking ; walking control ; walking pattern generation</subject><ispartof>Bioinspiration &amp; biomimetics, 2015-06, Vol.10 (4), p.041001-38</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-e9f2819098860682f55753d1def90a3e666e264ebe9521e4bef9e4e20ce4eef83</citedby><cites>FETCH-LOGICAL-c514t-e9f2819098860682f55753d1def90a3e666e264ebe9521e4bef9e4e20ce4eef83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-3190/10/4/041001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26119450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buschmann, Thomas</creatorcontrib><creatorcontrib>Ewald, Alexander</creatorcontrib><creatorcontrib>Twickel, Arndt von</creatorcontrib><creatorcontrib>Büschges, Ansgar</creatorcontrib><title>Controlling legs for locomotion-insights from robotics and neurobiology</title><title>Bioinspiration &amp; biomimetics</title><addtitle>BB</addtitle><addtitle>Bioinspir. Biomim</addtitle><description>Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.</description><subject>Animals</subject><subject>Biology</subject><subject>Biomimetics - instrumentation</subject><subject>Biomimetics - methods</subject><subject>Controllers</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Feedback</subject><subject>Feedback, Physiological - physiology</subject><subject>Flexibility</subject><subject>Humans</subject><subject>Leg - physiology</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>Models, Neurological</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>neural control</subject><subject>Neurobiology - methods</subject><subject>Robotics</subject><subject>Robotics - instrumentation</subject><subject>Robotics - methods</subject><subject>Robots</subject><subject>Walking</subject><subject>walking control</subject><subject>walking pattern generation</subject><issn>1748-3182</issn><issn>1748-3190</issn><issn>1748-3190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9PxCAQxYnRuOvqR9D0ZLzUAgUKR7PR1cTEi55J_0xrN22p0B7220vTdePBqBdgXn7zhsxD6JLgW4KljEjCZBgThSOCIxZhRjAmR2h50I8Pb0kX6My5LcacKUlP0YIKQhTjeIk2a9MN1jRN3VVBA5ULSmODxuSmNUNturDuXF29D163pg2sybycuyDtiqCD0de1aUy1O0cnZdo4uNjfK_T2cP-6fgyfXzZP67vnMOeEDSGokkr_OSWlwELSkvOExwUpoFQ4jUEIAVQwyEBxSoBlXgcGFOf-hFLGK3Qz-_bWfIzgBt3WLoemSTswo9NEcsUSweL4HyjGjPNYJH-jQlGqaCInVz6juTXOWSh1b-s2tTtNsJ6S0dPW9ZTApDA9J-P7rvYjxqyF4tD1FYUHrmegNr3emtF2fo86y7676L4oPUh-AH-f_glPE6Oo</recordid><startdate>20150629</startdate><enddate>20150629</enddate><creator>Buschmann, Thomas</creator><creator>Ewald, Alexander</creator><creator>Twickel, Arndt von</creator><creator>Büschges, Ansgar</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7TK</scope></search><sort><creationdate>20150629</creationdate><title>Controlling legs for locomotion-insights from robotics and neurobiology</title><author>Buschmann, Thomas ; Ewald, Alexander ; Twickel, Arndt von ; Büschges, Ansgar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-e9f2819098860682f55753d1def90a3e666e264ebe9521e4bef9e4e20ce4eef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Biomimetics - instrumentation</topic><topic>Biomimetics - methods</topic><topic>Controllers</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Feedback</topic><topic>Feedback, Physiological - physiology</topic><topic>Flexibility</topic><topic>Humans</topic><topic>Leg - physiology</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>Models, Neurological</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>neural control</topic><topic>Neurobiology - methods</topic><topic>Robotics</topic><topic>Robotics - instrumentation</topic><topic>Robotics - methods</topic><topic>Robots</topic><topic>Walking</topic><topic>walking control</topic><topic>walking pattern generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buschmann, Thomas</creatorcontrib><creatorcontrib>Ewald, Alexander</creatorcontrib><creatorcontrib>Twickel, Arndt von</creatorcontrib><creatorcontrib>Büschges, Ansgar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Neurosciences Abstracts</collection><jtitle>Bioinspiration &amp; biomimetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buschmann, Thomas</au><au>Ewald, Alexander</au><au>Twickel, Arndt von</au><au>Büschges, Ansgar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling legs for locomotion-insights from robotics and neurobiology</atitle><jtitle>Bioinspiration &amp; biomimetics</jtitle><stitle>BB</stitle><addtitle>Bioinspir. Biomim</addtitle><date>2015-06-29</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>041001</spage><epage>38</epage><pages>041001-38</pages><issn>1748-3182</issn><issn>1748-3190</issn><eissn>1748-3190</eissn><coden>BBIICI</coden><abstract>Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>26119450</pmid><doi>10.1088/1748-3190/10/4/041001</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3182
ispartof Bioinspiration & biomimetics, 2015-06, Vol.10 (4), p.041001-38
issn 1748-3182
1748-3190
1748-3190
language eng
recordid cdi_pubmed_primary_26119450
source Institute of Physics Journals; MEDLINE
subjects Animals
Biology
Biomimetics - instrumentation
Biomimetics - methods
Controllers
Equipment Design
Equipment Failure Analysis
Feedback
Feedback, Physiological - physiology
Flexibility
Humans
Leg - physiology
Locomotion
Locomotion - physiology
Models, Neurological
Muscle Contraction - physiology
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
neural control
Neurobiology - methods
Robotics
Robotics - instrumentation
Robotics - methods
Robots
Walking
walking control
walking pattern generation
title Controlling legs for locomotion-insights from robotics and neurobiology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20legs%20for%20locomotion-insights%20from%20robotics%20and%20neurobiology&rft.jtitle=Bioinspiration%20&%20biomimetics&rft.au=Buschmann,%20Thomas&rft.date=2015-06-29&rft.volume=10&rft.issue=4&rft.spage=041001&rft.epage=38&rft.pages=041001-38&rft.issn=1748-3182&rft.eissn=1748-3190&rft.coden=BBIICI&rft_id=info:doi/10.1088/1748-3190/10/4/041001&rft_dat=%3Cproquest_pubme%3E1859476433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692292783&rft_id=info:pmid/26119450&rfr_iscdi=true