Development of a platform for single cell genomics using convex lens-induced confinement

We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2015-07, Vol.15 (14), p.313-32
Hauptverfasser: Mahshid, Sara, Ahamed, Mohammed Jalal, Berard, Daniel, Amin, Susan, Sladek, Robert, Leslie, Sabrina R, Reisner, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 14
container_start_page 313
container_title Lab on a chip
container_volume 15
creator Mahshid, Sara
Ahamed, Mohammed Jalal
Berard, Daniel
Amin, Susan
Sladek, Robert
Leslie, Sabrina R
Reisner, Walter
description We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the flow-cell dimensions using the CLIC method was coupled with a flow-control mechanism for achieving efficient cell trapping, buffer exchange, and loading of long DNA molecules into nanofluidic arrays. Finite element simulation of fluid flow gives rise to optimized design parameters for overcoming the high hydraulic resistance present in the micro/nano-confinement region. By tuning design parameters such as the pressure gradient and CLIC confinement, an efficient on-chip single cell analysis protocol can be obtained. We demonstrate that we can extract Mbp long genomic DNA molecules from a single human lybphoblastoid cell and stretch these molecules in the nanochannels for optical interrogation. We present a lab-on-a-chip for the next generation of single-cell genomics, performing full-cycle single-cell analysis by demonstrating mega-base pair genomic DNAs in nanochannels extracted in situ .
doi_str_mv 10.1039/c5lc00492f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26062011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692753714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c9f7d2bdec6dad92f6ddae545bc0e3e2715d9abf32f7251c5c7f6caea686e0463</originalsourceid><addsrcrecordid>eNqFkc1LxDAUxIMorq5evCvxJkI1H03aHqW6Kix4UfBW0uRlqaRpbbaL_ve27rre9JKEmR_DexOETii5ooRn11o4TUicMbuDDmic8IjQNNvdvrNkgg5DeCOEilim-2jCJJGMUHqAXm9hBa5pa_BL3FiscOvU0jZdjYcDh8ovHGANzuEF-KaudMD9qGLd-BV8YAc-RJU3vQYzarbyMIYdoT2rXIDjzT1FL7O75_whmj_dP-Y380hzmS4jndnEsNKAlkaZYQVpjAIRi1IT4MASKkymSsuZTZigWujESq1AyVQCiSWfoot1bts17z2EZVFXYZxXeWj6UNBEcMEJYfR_VGZsoBMaD-jlGtVdE0IHtmi7qlbdZ0FJMZZe5GKef5c-G-CzTW5f1mC26E_LA3C6Brqgt-7vrw3--V9-0RrLvwDbbZMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692753714</pqid></control><display><type>article</type><title>Development of a platform for single cell genomics using convex lens-induced confinement</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mahshid, Sara ; Ahamed, Mohammed Jalal ; Berard, Daniel ; Amin, Susan ; Sladek, Robert ; Leslie, Sabrina R ; Reisner, Walter</creator><creatorcontrib>Mahshid, Sara ; Ahamed, Mohammed Jalal ; Berard, Daniel ; Amin, Susan ; Sladek, Robert ; Leslie, Sabrina R ; Reisner, Walter</creatorcontrib><description>We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the flow-cell dimensions using the CLIC method was coupled with a flow-control mechanism for achieving efficient cell trapping, buffer exchange, and loading of long DNA molecules into nanofluidic arrays. Finite element simulation of fluid flow gives rise to optimized design parameters for overcoming the high hydraulic resistance present in the micro/nano-confinement region. By tuning design parameters such as the pressure gradient and CLIC confinement, an efficient on-chip single cell analysis protocol can be obtained. We demonstrate that we can extract Mbp long genomic DNA molecules from a single human lybphoblastoid cell and stretch these molecules in the nanochannels for optical interrogation. We present a lab-on-a-chip for the next generation of single-cell genomics, performing full-cycle single-cell analysis by demonstrating mega-base pair genomic DNAs in nanochannels extracted in situ .</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c5lc00492f</identifier><identifier>PMID: 26062011</identifier><language>eng</language><publisher>England</publisher><subject>Arrays ; Cells, Cultured ; Computational fluid dynamics ; Confinement ; Deoxyribonucleic acid ; Design parameters ; DNA - genetics ; Fluid flow ; Genomics ; Humans ; Lenses ; Microfluidic Analytical Techniques - instrumentation ; Nanostructure ; Nanotechnology - instrumentation ; Single-Cell Analysis - instrumentation ; Trapping</subject><ispartof>Lab on a chip, 2015-07, Vol.15 (14), p.313-32</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c9f7d2bdec6dad92f6ddae545bc0e3e2715d9abf32f7251c5c7f6caea686e0463</citedby><cites>FETCH-LOGICAL-c368t-c9f7d2bdec6dad92f6ddae545bc0e3e2715d9abf32f7251c5c7f6caea686e0463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26062011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahshid, Sara</creatorcontrib><creatorcontrib>Ahamed, Mohammed Jalal</creatorcontrib><creatorcontrib>Berard, Daniel</creatorcontrib><creatorcontrib>Amin, Susan</creatorcontrib><creatorcontrib>Sladek, Robert</creatorcontrib><creatorcontrib>Leslie, Sabrina R</creatorcontrib><creatorcontrib>Reisner, Walter</creatorcontrib><title>Development of a platform for single cell genomics using convex lens-induced confinement</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the flow-cell dimensions using the CLIC method was coupled with a flow-control mechanism for achieving efficient cell trapping, buffer exchange, and loading of long DNA molecules into nanofluidic arrays. Finite element simulation of fluid flow gives rise to optimized design parameters for overcoming the high hydraulic resistance present in the micro/nano-confinement region. By tuning design parameters such as the pressure gradient and CLIC confinement, an efficient on-chip single cell analysis protocol can be obtained. We demonstrate that we can extract Mbp long genomic DNA molecules from a single human lybphoblastoid cell and stretch these molecules in the nanochannels for optical interrogation. We present a lab-on-a-chip for the next generation of single-cell genomics, performing full-cycle single-cell analysis by demonstrating mega-base pair genomic DNAs in nanochannels extracted in situ .</description><subject>Arrays</subject><subject>Cells, Cultured</subject><subject>Computational fluid dynamics</subject><subject>Confinement</subject><subject>Deoxyribonucleic acid</subject><subject>Design parameters</subject><subject>DNA - genetics</subject><subject>Fluid flow</subject><subject>Genomics</subject><subject>Humans</subject><subject>Lenses</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Nanostructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Single-Cell Analysis - instrumentation</subject><subject>Trapping</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1LxDAUxIMorq5evCvxJkI1H03aHqW6Kix4UfBW0uRlqaRpbbaL_ve27rre9JKEmR_DexOETii5ooRn11o4TUicMbuDDmic8IjQNNvdvrNkgg5DeCOEilim-2jCJJGMUHqAXm9hBa5pa_BL3FiscOvU0jZdjYcDh8ovHGANzuEF-KaudMD9qGLd-BV8YAc-RJU3vQYzarbyMIYdoT2rXIDjzT1FL7O75_whmj_dP-Y380hzmS4jndnEsNKAlkaZYQVpjAIRi1IT4MASKkymSsuZTZigWujESq1AyVQCiSWfoot1bts17z2EZVFXYZxXeWj6UNBEcMEJYfR_VGZsoBMaD-jlGtVdE0IHtmi7qlbdZ0FJMZZe5GKef5c-G-CzTW5f1mC26E_LA3C6Brqgt-7vrw3--V9-0RrLvwDbbZMn</recordid><startdate>20150721</startdate><enddate>20150721</enddate><creator>Mahshid, Sara</creator><creator>Ahamed, Mohammed Jalal</creator><creator>Berard, Daniel</creator><creator>Amin, Susan</creator><creator>Sladek, Robert</creator><creator>Leslie, Sabrina R</creator><creator>Reisner, Walter</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150721</creationdate><title>Development of a platform for single cell genomics using convex lens-induced confinement</title><author>Mahshid, Sara ; Ahamed, Mohammed Jalal ; Berard, Daniel ; Amin, Susan ; Sladek, Robert ; Leslie, Sabrina R ; Reisner, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c9f7d2bdec6dad92f6ddae545bc0e3e2715d9abf32f7251c5c7f6caea686e0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Cells, Cultured</topic><topic>Computational fluid dynamics</topic><topic>Confinement</topic><topic>Deoxyribonucleic acid</topic><topic>Design parameters</topic><topic>DNA - genetics</topic><topic>Fluid flow</topic><topic>Genomics</topic><topic>Humans</topic><topic>Lenses</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Nanostructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Single-Cell Analysis - instrumentation</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahshid, Sara</creatorcontrib><creatorcontrib>Ahamed, Mohammed Jalal</creatorcontrib><creatorcontrib>Berard, Daniel</creatorcontrib><creatorcontrib>Amin, Susan</creatorcontrib><creatorcontrib>Sladek, Robert</creatorcontrib><creatorcontrib>Leslie, Sabrina R</creatorcontrib><creatorcontrib>Reisner, Walter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahshid, Sara</au><au>Ahamed, Mohammed Jalal</au><au>Berard, Daniel</au><au>Amin, Susan</au><au>Sladek, Robert</au><au>Leslie, Sabrina R</au><au>Reisner, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a platform for single cell genomics using convex lens-induced confinement</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2015-07-21</date><risdate>2015</risdate><volume>15</volume><issue>14</issue><spage>313</spage><epage>32</epage><pages>313-32</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the flow-cell dimensions using the CLIC method was coupled with a flow-control mechanism for achieving efficient cell trapping, buffer exchange, and loading of long DNA molecules into nanofluidic arrays. Finite element simulation of fluid flow gives rise to optimized design parameters for overcoming the high hydraulic resistance present in the micro/nano-confinement region. By tuning design parameters such as the pressure gradient and CLIC confinement, an efficient on-chip single cell analysis protocol can be obtained. We demonstrate that we can extract Mbp long genomic DNA molecules from a single human lybphoblastoid cell and stretch these molecules in the nanochannels for optical interrogation. We present a lab-on-a-chip for the next generation of single-cell genomics, performing full-cycle single-cell analysis by demonstrating mega-base pair genomic DNAs in nanochannels extracted in situ .</abstract><cop>England</cop><pmid>26062011</pmid><doi>10.1039/c5lc00492f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2015-07, Vol.15 (14), p.313-32
issn 1473-0197
1473-0189
language eng
recordid cdi_pubmed_primary_26062011
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Arrays
Cells, Cultured
Computational fluid dynamics
Confinement
Deoxyribonucleic acid
Design parameters
DNA - genetics
Fluid flow
Genomics
Humans
Lenses
Microfluidic Analytical Techniques - instrumentation
Nanostructure
Nanotechnology - instrumentation
Single-Cell Analysis - instrumentation
Trapping
title Development of a platform for single cell genomics using convex lens-induced confinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20platform%20for%20single%20cell%20genomics%20using%20convex%20lens-induced%20confinement&rft.jtitle=Lab%20on%20a%20chip&rft.au=Mahshid,%20Sara&rft.date=2015-07-21&rft.volume=15&rft.issue=14&rft.spage=313&rft.epage=32&rft.pages=313-32&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c5lc00492f&rft_dat=%3Cproquest_pubme%3E1692753714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692753714&rft_id=info:pmid/26062011&rfr_iscdi=true