Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks

Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2015-09, Vol.19 (5), p.1627-1636
Hauptverfasser: Chen, Hao, Ni, Dong, Qin, Jing, Li, Shengli, Yang, Xin, Wang, Tianfu, Heng, Pheng Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1636
container_issue 5
container_start_page 1627
container_title IEEE journal of biomedical and health informatics
container_volume 19
creator Chen, Hao
Ni, Dong
Qin, Jing
Li, Shengli
Yang, Xin
Wang, Tianfu
Heng, Pheng Ann
description Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.
doi_str_mv 10.1109/JBHI.2015.2425041
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_25910262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7090943</ieee_id><sourcerecordid>1709707922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-15ab78442e129932dc4106a7e5537715e7dfb4cdd2951844adca6e638013eea3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMottT-ABEkRy9bM9mPbI7aWlspVbCePCzTzRRWt7s12VX015vSj1wSZp55hzyMXYIYAAh9-3Q_mQ6kgHggIxmLCE5YV0KSBlKK9PTwBh11WN-5D-FP6ks6OWcdGWsQMpFd9v7aYGXQGv5SYkV8VudYFn_YFHXFi4qPqcGSv5WNRVe3leHfBfJRvUbfW1is3IqsJcNHRBs-p9Z6ek7NT20_3QU7W2HpqL-_e2wxflgMJ8Hs-XE6vJsFeZiqJoAYlyqNIkkgtQ6lySMQCSqK41ApiEmZ1TLKjZE6Bs-hyTGhJEwFhEQY9tjNLnZj66-WXJOtC5dTuf1P3boMlNBKKC2lR2GH5rZ2ztIq29hijfY3A5FtrWZbq9nWara36meu9_Htck3mOHFw6IGrHVAQ0bHtlwodheE_vCZ6pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709707922</pqid></control><display><type>article</type><title>Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Hao ; Ni, Dong ; Qin, Jing ; Li, Shengli ; Yang, Xin ; Wang, Tianfu ; Heng, Pheng Ann</creator><creatorcontrib>Chen, Hao ; Ni, Dong ; Qin, Jing ; Li, Shengli ; Yang, Xin ; Wang, Tianfu ; Heng, Pheng Ann</creatorcontrib><description>Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2015.2425041</identifier><identifier>PMID: 25910262</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Abdomen - diagnostic imaging ; Biomedical imaging ; convolutional neural network ; deep learning ; Dictionaries ; domain transfer ; Feature extraction ; Female ; Fetus - physiology ; Humans ; Image Processing, Computer-Assisted - methods ; Informatics ; knowledge transfer ; Neural Networks (Computer) ; Pregnancy ; ROC Curve ; standard plane ; Training ; Ultrasonography, Prenatal - methods ; Ultrasound ; Videos</subject><ispartof>IEEE journal of biomedical and health informatics, 2015-09, Vol.19 (5), p.1627-1636</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-15ab78442e129932dc4106a7e5537715e7dfb4cdd2951844adca6e638013eea3</citedby><cites>FETCH-LOGICAL-c387t-15ab78442e129932dc4106a7e5537715e7dfb4cdd2951844adca6e638013eea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7090943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7090943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25910262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Li, Shengli</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Heng, Pheng Ann</creatorcontrib><title>Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.</description><subject>Abdomen - diagnostic imaging</subject><subject>Biomedical imaging</subject><subject>convolutional neural network</subject><subject>deep learning</subject><subject>Dictionaries</subject><subject>domain transfer</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fetus - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Informatics</subject><subject>knowledge transfer</subject><subject>Neural Networks (Computer)</subject><subject>Pregnancy</subject><subject>ROC Curve</subject><subject>standard plane</subject><subject>Training</subject><subject>Ultrasonography, Prenatal - methods</subject><subject>Ultrasound</subject><subject>Videos</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMottT-ABEkRy9bM9mPbI7aWlspVbCePCzTzRRWt7s12VX015vSj1wSZp55hzyMXYIYAAh9-3Q_mQ6kgHggIxmLCE5YV0KSBlKK9PTwBh11WN-5D-FP6ks6OWcdGWsQMpFd9v7aYGXQGv5SYkV8VudYFn_YFHXFi4qPqcGSv5WNRVe3leHfBfJRvUbfW1is3IqsJcNHRBs-p9Z6ek7NT20_3QU7W2HpqL-_e2wxflgMJ8Hs-XE6vJsFeZiqJoAYlyqNIkkgtQ6lySMQCSqK41ApiEmZ1TLKjZE6Bs-hyTGhJEwFhEQY9tjNLnZj66-WXJOtC5dTuf1P3boMlNBKKC2lR2GH5rZ2ztIq29hijfY3A5FtrWZbq9nWara36meu9_Htck3mOHFw6IGrHVAQ0bHtlwodheE_vCZ6pw</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Chen, Hao</creator><creator>Ni, Dong</creator><creator>Qin, Jing</creator><creator>Li, Shengli</creator><creator>Yang, Xin</creator><creator>Wang, Tianfu</creator><creator>Heng, Pheng Ann</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks</title><author>Chen, Hao ; Ni, Dong ; Qin, Jing ; Li, Shengli ; Yang, Xin ; Wang, Tianfu ; Heng, Pheng Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-15ab78442e129932dc4106a7e5537715e7dfb4cdd2951844adca6e638013eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abdomen - diagnostic imaging</topic><topic>Biomedical imaging</topic><topic>convolutional neural network</topic><topic>deep learning</topic><topic>Dictionaries</topic><topic>domain transfer</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fetus - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Informatics</topic><topic>knowledge transfer</topic><topic>Neural Networks (Computer)</topic><topic>Pregnancy</topic><topic>ROC Curve</topic><topic>standard plane</topic><topic>Training</topic><topic>Ultrasonography, Prenatal - methods</topic><topic>Ultrasound</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Li, Shengli</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Heng, Pheng Ann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hao</au><au>Ni, Dong</au><au>Qin, Jing</au><au>Li, Shengli</au><au>Yang, Xin</au><au>Wang, Tianfu</au><au>Heng, Pheng Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2015-09</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>1627</spage><epage>1636</epage><pages>1627-1636</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25910262</pmid><doi>10.1109/JBHI.2015.2425041</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2015-09, Vol.19 (5), p.1627-1636
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmed_primary_25910262
source IEEE Electronic Library (IEL)
subjects Abdomen - diagnostic imaging
Biomedical imaging
convolutional neural network
deep learning
Dictionaries
domain transfer
Feature extraction
Female
Fetus - physiology
Humans
Image Processing, Computer-Assisted - methods
Informatics
knowledge transfer
Neural Networks (Computer)
Pregnancy
ROC Curve
standard plane
Training
Ultrasonography, Prenatal - methods
Ultrasound
Videos
title Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standard%20Plane%20Localization%20in%20Fetal%20Ultrasound%20via%20Domain%20Transferred%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Chen,%20Hao&rft.date=2015-09&rft.volume=19&rft.issue=5&rft.spage=1627&rft.epage=1636&rft.pages=1627-1636&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2015.2425041&rft_dat=%3Cproquest_RIE%3E1709707922%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709707922&rft_id=info:pmid/25910262&rft_ieee_id=7090943&rfr_iscdi=true