Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks
Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2015-09, Vol.19 (5), p.1627-1636 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1636 |
---|---|
container_issue | 5 |
container_start_page | 1627 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 19 |
creator | Chen, Hao Ni, Dong Qin, Jing Li, Shengli Yang, Xin Wang, Tianfu Heng, Pheng Ann |
description | Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features. |
doi_str_mv | 10.1109/JBHI.2015.2425041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_25910262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7090943</ieee_id><sourcerecordid>1709707922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-15ab78442e129932dc4106a7e5537715e7dfb4cdd2951844adca6e638013eea3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMottT-ABEkRy9bM9mPbI7aWlspVbCePCzTzRRWt7s12VX015vSj1wSZp55hzyMXYIYAAh9-3Q_mQ6kgHggIxmLCE5YV0KSBlKK9PTwBh11WN-5D-FP6ks6OWcdGWsQMpFd9v7aYGXQGv5SYkV8VudYFn_YFHXFi4qPqcGSv5WNRVe3leHfBfJRvUbfW1is3IqsJcNHRBs-p9Z6ek7NT20_3QU7W2HpqL-_e2wxflgMJ8Hs-XE6vJsFeZiqJoAYlyqNIkkgtQ6lySMQCSqK41ApiEmZ1TLKjZE6Bs-hyTGhJEwFhEQY9tjNLnZj66-WXJOtC5dTuf1P3boMlNBKKC2lR2GH5rZ2ztIq29hijfY3A5FtrWZbq9nWara36meu9_Htck3mOHFw6IGrHVAQ0bHtlwodheE_vCZ6pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709707922</pqid></control><display><type>article</type><title>Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Hao ; Ni, Dong ; Qin, Jing ; Li, Shengli ; Yang, Xin ; Wang, Tianfu ; Heng, Pheng Ann</creator><creatorcontrib>Chen, Hao ; Ni, Dong ; Qin, Jing ; Li, Shengli ; Yang, Xin ; Wang, Tianfu ; Heng, Pheng Ann</creatorcontrib><description>Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2015.2425041</identifier><identifier>PMID: 25910262</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Abdomen - diagnostic imaging ; Biomedical imaging ; convolutional neural network ; deep learning ; Dictionaries ; domain transfer ; Feature extraction ; Female ; Fetus - physiology ; Humans ; Image Processing, Computer-Assisted - methods ; Informatics ; knowledge transfer ; Neural Networks (Computer) ; Pregnancy ; ROC Curve ; standard plane ; Training ; Ultrasonography, Prenatal - methods ; Ultrasound ; Videos</subject><ispartof>IEEE journal of biomedical and health informatics, 2015-09, Vol.19 (5), p.1627-1636</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-15ab78442e129932dc4106a7e5537715e7dfb4cdd2951844adca6e638013eea3</citedby><cites>FETCH-LOGICAL-c387t-15ab78442e129932dc4106a7e5537715e7dfb4cdd2951844adca6e638013eea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7090943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7090943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25910262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Li, Shengli</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Heng, Pheng Ann</creatorcontrib><title>Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.</description><subject>Abdomen - diagnostic imaging</subject><subject>Biomedical imaging</subject><subject>convolutional neural network</subject><subject>deep learning</subject><subject>Dictionaries</subject><subject>domain transfer</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fetus - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Informatics</subject><subject>knowledge transfer</subject><subject>Neural Networks (Computer)</subject><subject>Pregnancy</subject><subject>ROC Curve</subject><subject>standard plane</subject><subject>Training</subject><subject>Ultrasonography, Prenatal - methods</subject><subject>Ultrasound</subject><subject>Videos</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMottT-ABEkRy9bM9mPbI7aWlspVbCePCzTzRRWt7s12VX015vSj1wSZp55hzyMXYIYAAh9-3Q_mQ6kgHggIxmLCE5YV0KSBlKK9PTwBh11WN-5D-FP6ks6OWcdGWsQMpFd9v7aYGXQGv5SYkV8VudYFn_YFHXFi4qPqcGSv5WNRVe3leHfBfJRvUbfW1is3IqsJcNHRBs-p9Z6ek7NT20_3QU7W2HpqL-_e2wxflgMJ8Hs-XE6vJsFeZiqJoAYlyqNIkkgtQ6lySMQCSqK41ApiEmZ1TLKjZE6Bs-hyTGhJEwFhEQY9tjNLnZj66-WXJOtC5dTuf1P3boMlNBKKC2lR2GH5rZ2ztIq29hijfY3A5FtrWZbq9nWara36meu9_Htck3mOHFw6IGrHVAQ0bHtlwodheE_vCZ6pw</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Chen, Hao</creator><creator>Ni, Dong</creator><creator>Qin, Jing</creator><creator>Li, Shengli</creator><creator>Yang, Xin</creator><creator>Wang, Tianfu</creator><creator>Heng, Pheng Ann</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks</title><author>Chen, Hao ; Ni, Dong ; Qin, Jing ; Li, Shengli ; Yang, Xin ; Wang, Tianfu ; Heng, Pheng Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-15ab78442e129932dc4106a7e5537715e7dfb4cdd2951844adca6e638013eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abdomen - diagnostic imaging</topic><topic>Biomedical imaging</topic><topic>convolutional neural network</topic><topic>deep learning</topic><topic>Dictionaries</topic><topic>domain transfer</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fetus - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Informatics</topic><topic>knowledge transfer</topic><topic>Neural Networks (Computer)</topic><topic>Pregnancy</topic><topic>ROC Curve</topic><topic>standard plane</topic><topic>Training</topic><topic>Ultrasonography, Prenatal - methods</topic><topic>Ultrasound</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Li, Shengli</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Heng, Pheng Ann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hao</au><au>Ni, Dong</au><au>Qin, Jing</au><au>Li, Shengli</au><au>Yang, Xin</au><au>Wang, Tianfu</au><au>Heng, Pheng Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2015-09</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>1627</spage><epage>1636</epage><pages>1627-1636</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25910262</pmid><doi>10.1109/JBHI.2015.2425041</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2015-09, Vol.19 (5), p.1627-1636 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_25910262 |
source | IEEE Electronic Library (IEL) |
subjects | Abdomen - diagnostic imaging Biomedical imaging convolutional neural network deep learning Dictionaries domain transfer Feature extraction Female Fetus - physiology Humans Image Processing, Computer-Assisted - methods Informatics knowledge transfer Neural Networks (Computer) Pregnancy ROC Curve standard plane Training Ultrasonography, Prenatal - methods Ultrasound Videos |
title | Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standard%20Plane%20Localization%20in%20Fetal%20Ultrasound%20via%20Domain%20Transferred%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Chen,%20Hao&rft.date=2015-09&rft.volume=19&rft.issue=5&rft.spage=1627&rft.epage=1636&rft.pages=1627-1636&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2015.2425041&rft_dat=%3Cproquest_RIE%3E1709707922%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709707922&rft_id=info:pmid/25910262&rft_ieee_id=7090943&rfr_iscdi=true |