An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation

This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on haptics 2015-04, Vol.8 (2), p.140-151
Hauptverfasser: Leonardis, Daniele, Chisari, Carmelo, Bergamasco, Massimo, Frisoli, Antonio, Barsotti, Michele, Loconsole, Claudio, Solazzi, Massimiliano, Troncossi, Marco, Mazzotti, Claudio, Castelli, Vincenzo Parenti, Procopio, Caterina, Lamola, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 2
container_start_page 140
container_title IEEE transactions on haptics
container_volume 8
creator Leonardis, Daniele
Chisari, Carmelo
Bergamasco, Massimo
Frisoli, Antonio
Barsotti, Michele
Loconsole, Claudio
Solazzi, Massimiliano
Troncossi, Marco
Mazzotti, Claudio
Castelli, Vincenzo Parenti
Procopio, Caterina
Lamola, Giuseppe
description This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.
doi_str_mv 10.1109/TOH.2015.2417570
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_25838528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7072553</ieee_id><sourcerecordid>3739543131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-5a5bc51a45091ef1f03c3042a48ae3f67bdbed7f4af1ee45f3596ec8aab8e9023</originalsourceid><addsrcrecordid>eNqFkc9L40AYhgdxWavuXRAk4MVLut_8yswctdR2waVQ9BwmyTcYnWZ0JoXd_96E1h68ePoO7_O-8PEQckFhSimY34-r5ZQBlVMmqJIKjsiEcWZyAZIekwk13ORUUHZCTlN6ASiYMuInOWFScy2ZnpDFbZfN_y7yWej6GLzHJluHKvRtnS1t12TzfyG9osc-dJkLMbtrve0xWp-t8dlWrW9727ehOyc_nPUJf-3vGXm6nz_OlvnDavFndvuQ15LLPpdWVrWkVkgwFB11wGsOglmhLXJXqKqpsFFOWEcRhXRcmgJrbW2l0QDjZ-Rmt_sWw_sWU19u2lSj97bDsE0lVQUDpZSB79FiGAQt2Ihef0FfwjZ2wyMjJRnXWowU7Kg6hpQiuvItthsb_5cUytFHOfgoRx_l3sdQudoPb6sNNofCp4ABuNwBLSIeYgWKScn5B1aEjOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695238840</pqid></control><display><type>article</type><title>An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation</title><source>IEEE Electronic Library (IEL)</source><creator>Leonardis, Daniele ; Chisari, Carmelo ; Bergamasco, Massimo ; Frisoli, Antonio ; Barsotti, Michele ; Loconsole, Claudio ; Solazzi, Massimiliano ; Troncossi, Marco ; Mazzotti, Claudio ; Castelli, Vincenzo Parenti ; Procopio, Caterina ; Lamola, Giuseppe</creator><creatorcontrib>Leonardis, Daniele ; Chisari, Carmelo ; Bergamasco, Massimo ; Frisoli, Antonio ; Barsotti, Michele ; Loconsole, Claudio ; Solazzi, Massimiliano ; Troncossi, Marco ; Mazzotti, Claudio ; Castelli, Vincenzo Parenti ; Procopio, Caterina ; Lamola, Giuseppe</creatorcontrib><description>This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.</description><identifier>ISSN: 1939-1412</identifier><identifier>EISSN: 2329-4051</identifier><identifier>DOI: 10.1109/TOH.2015.2417570</identifier><identifier>PMID: 25838528</identifier><identifier>CODEN: ITHEBX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>C.2.0.c Emerging technologies ; Electromyography ; Exoskeleton Device ; Exoskeletons ; Fingers - physiology ; Force ; Grasping ; Grasping force ; H.1.2 User/Machine Systems ; H.1.2.b Human-centere d computing ; H.5.2.g Haptic I/O ; Hand Strength - physiology ; Humans ; I.2.9 Robotics ; J.3.b Health ; L.1 Human Haptics ; L.1.0.b Biomechanics ; L.3.0 Integrating touchbased interactions into various domains Assistive technology ; L.3.0.l Rehabilitation ; Orthotic Devices ; Patients ; Rehabilitation ; Robot sensing systems ; Robotics ; Robotics - instrumentation ; Robotics - methods ; Stroke ; Stroke - physiopathology ; Stroke Rehabilitation ; Strokes ; Tasks ; Training</subject><ispartof>IEEE transactions on haptics, 2015-04, Vol.8 (2), p.140-151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr/Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-5a5bc51a45091ef1f03c3042a48ae3f67bdbed7f4af1ee45f3596ec8aab8e9023</citedby><cites>FETCH-LOGICAL-c535t-5a5bc51a45091ef1f03c3042a48ae3f67bdbed7f4af1ee45f3596ec8aab8e9023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7072553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7072553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25838528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leonardis, Daniele</creatorcontrib><creatorcontrib>Chisari, Carmelo</creatorcontrib><creatorcontrib>Bergamasco, Massimo</creatorcontrib><creatorcontrib>Frisoli, Antonio</creatorcontrib><creatorcontrib>Barsotti, Michele</creatorcontrib><creatorcontrib>Loconsole, Claudio</creatorcontrib><creatorcontrib>Solazzi, Massimiliano</creatorcontrib><creatorcontrib>Troncossi, Marco</creatorcontrib><creatorcontrib>Mazzotti, Claudio</creatorcontrib><creatorcontrib>Castelli, Vincenzo Parenti</creatorcontrib><creatorcontrib>Procopio, Caterina</creatorcontrib><creatorcontrib>Lamola, Giuseppe</creatorcontrib><title>An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation</title><title>IEEE transactions on haptics</title><addtitle>TOH</addtitle><addtitle>IEEE Trans Haptics</addtitle><description>This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.</description><subject>C.2.0.c Emerging technologies</subject><subject>Electromyography</subject><subject>Exoskeleton Device</subject><subject>Exoskeletons</subject><subject>Fingers - physiology</subject><subject>Force</subject><subject>Grasping</subject><subject>Grasping force</subject><subject>H.1.2 User/Machine Systems</subject><subject>H.1.2.b Human-centere d computing</subject><subject>H.5.2.g Haptic I/O</subject><subject>Hand Strength - physiology</subject><subject>Humans</subject><subject>I.2.9 Robotics</subject><subject>J.3.b Health</subject><subject>L.1 Human Haptics</subject><subject>L.1.0.b Biomechanics</subject><subject>L.3.0 Integrating touchbased interactions into various domains Assistive technology</subject><subject>L.3.0.l Rehabilitation</subject><subject>Orthotic Devices</subject><subject>Patients</subject><subject>Rehabilitation</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robotics - instrumentation</subject><subject>Robotics - methods</subject><subject>Stroke</subject><subject>Stroke - physiopathology</subject><subject>Stroke Rehabilitation</subject><subject>Strokes</subject><subject>Tasks</subject><subject>Training</subject><issn>1939-1412</issn><issn>2329-4051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9L40AYhgdxWavuXRAk4MVLut_8yswctdR2waVQ9BwmyTcYnWZ0JoXd_96E1h68ePoO7_O-8PEQckFhSimY34-r5ZQBlVMmqJIKjsiEcWZyAZIekwk13ORUUHZCTlN6ASiYMuInOWFScy2ZnpDFbZfN_y7yWej6GLzHJluHKvRtnS1t12TzfyG9osc-dJkLMbtrve0xWp-t8dlWrW9727ehOyc_nPUJf-3vGXm6nz_OlvnDavFndvuQ15LLPpdWVrWkVkgwFB11wGsOglmhLXJXqKqpsFFOWEcRhXRcmgJrbW2l0QDjZ-Rmt_sWw_sWU19u2lSj97bDsE0lVQUDpZSB79FiGAQt2Ihef0FfwjZ2wyMjJRnXWowU7Kg6hpQiuvItthsb_5cUytFHOfgoRx_l3sdQudoPb6sNNofCp4ABuNwBLSIeYgWKScn5B1aEjOw</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Leonardis, Daniele</creator><creator>Chisari, Carmelo</creator><creator>Bergamasco, Massimo</creator><creator>Frisoli, Antonio</creator><creator>Barsotti, Michele</creator><creator>Loconsole, Claudio</creator><creator>Solazzi, Massimiliano</creator><creator>Troncossi, Marco</creator><creator>Mazzotti, Claudio</creator><creator>Castelli, Vincenzo Parenti</creator><creator>Procopio, Caterina</creator><creator>Lamola, Giuseppe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>201504</creationdate><title>An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation</title><author>Leonardis, Daniele ; Chisari, Carmelo ; Bergamasco, Massimo ; Frisoli, Antonio ; Barsotti, Michele ; Loconsole, Claudio ; Solazzi, Massimiliano ; Troncossi, Marco ; Mazzotti, Claudio ; Castelli, Vincenzo Parenti ; Procopio, Caterina ; Lamola, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-5a5bc51a45091ef1f03c3042a48ae3f67bdbed7f4af1ee45f3596ec8aab8e9023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>C.2.0.c Emerging technologies</topic><topic>Electromyography</topic><topic>Exoskeleton Device</topic><topic>Exoskeletons</topic><topic>Fingers - physiology</topic><topic>Force</topic><topic>Grasping</topic><topic>Grasping force</topic><topic>H.1.2 User/Machine Systems</topic><topic>H.1.2.b Human-centere d computing</topic><topic>H.5.2.g Haptic I/O</topic><topic>Hand Strength - physiology</topic><topic>Humans</topic><topic>I.2.9 Robotics</topic><topic>J.3.b Health</topic><topic>L.1 Human Haptics</topic><topic>L.1.0.b Biomechanics</topic><topic>L.3.0 Integrating touchbased interactions into various domains Assistive technology</topic><topic>L.3.0.l Rehabilitation</topic><topic>Orthotic Devices</topic><topic>Patients</topic><topic>Rehabilitation</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robotics - instrumentation</topic><topic>Robotics - methods</topic><topic>Stroke</topic><topic>Stroke - physiopathology</topic><topic>Stroke Rehabilitation</topic><topic>Strokes</topic><topic>Tasks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonardis, Daniele</creatorcontrib><creatorcontrib>Chisari, Carmelo</creatorcontrib><creatorcontrib>Bergamasco, Massimo</creatorcontrib><creatorcontrib>Frisoli, Antonio</creatorcontrib><creatorcontrib>Barsotti, Michele</creatorcontrib><creatorcontrib>Loconsole, Claudio</creatorcontrib><creatorcontrib>Solazzi, Massimiliano</creatorcontrib><creatorcontrib>Troncossi, Marco</creatorcontrib><creatorcontrib>Mazzotti, Claudio</creatorcontrib><creatorcontrib>Castelli, Vincenzo Parenti</creatorcontrib><creatorcontrib>Procopio, Caterina</creatorcontrib><creatorcontrib>Lamola, Giuseppe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on haptics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leonardis, Daniele</au><au>Chisari, Carmelo</au><au>Bergamasco, Massimo</au><au>Frisoli, Antonio</au><au>Barsotti, Michele</au><au>Loconsole, Claudio</au><au>Solazzi, Massimiliano</au><au>Troncossi, Marco</au><au>Mazzotti, Claudio</au><au>Castelli, Vincenzo Parenti</au><au>Procopio, Caterina</au><au>Lamola, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation</atitle><jtitle>IEEE transactions on haptics</jtitle><stitle>TOH</stitle><addtitle>IEEE Trans Haptics</addtitle><date>2015-04</date><risdate>2015</risdate><volume>8</volume><issue>2</issue><spage>140</spage><epage>151</epage><pages>140-151</pages><issn>1939-1412</issn><eissn>2329-4051</eissn><coden>ITHEBX</coden><abstract>This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25838528</pmid><doi>10.1109/TOH.2015.2417570</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1412
ispartof IEEE transactions on haptics, 2015-04, Vol.8 (2), p.140-151
issn 1939-1412
2329-4051
language eng
recordid cdi_pubmed_primary_25838528
source IEEE Electronic Library (IEL)
subjects C.2.0.c Emerging technologies
Electromyography
Exoskeleton Device
Exoskeletons
Fingers - physiology
Force
Grasping
Grasping force
H.1.2 User/Machine Systems
H.1.2.b Human-centere d computing
H.5.2.g Haptic I/O
Hand Strength - physiology
Humans
I.2.9 Robotics
J.3.b Health
L.1 Human Haptics
L.1.0.b Biomechanics
L.3.0 Integrating touchbased interactions into various domains Assistive technology
L.3.0.l Rehabilitation
Orthotic Devices
Patients
Rehabilitation
Robot sensing systems
Robotics
Robotics - instrumentation
Robotics - methods
Stroke
Stroke - physiopathology
Stroke Rehabilitation
Strokes
Tasks
Training
title An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20EMG-Controlled%20Robotic%20Hand%20Exoskeleton%20for%20Bilateral%20Rehabilitation&rft.jtitle=IEEE%20transactions%20on%20haptics&rft.au=Leonardis,%20Daniele&rft.date=2015-04&rft.volume=8&rft.issue=2&rft.spage=140&rft.epage=151&rft.pages=140-151&rft.issn=1939-1412&rft.eissn=2329-4051&rft.coden=ITHEBX&rft_id=info:doi/10.1109/TOH.2015.2417570&rft_dat=%3Cproquest_RIE%3E3739543131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695238840&rft_id=info:pmid/25838528&rft_ieee_id=7072553&rfr_iscdi=true