Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography
Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2015-09, Vol.34 (9), p.1965-1975 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1975 |
---|---|
container_issue | 9 |
container_start_page | 1965 |
container_title | IEEE transactions on medical imaging |
container_volume | 34 |
creator | Philipsen, R. H. H. M. Maduskar, P. Hogeweg, L. Melendez, J. Sanchez, C. I. van Ginneken, B. |
description | Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72 ± 0.30 and 0.87 ± 0.11 for both reference methods to 0.89 ± 0.09 (p |
doi_str_mv | 10.1109/TMI.2015.2418031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_25838517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7073580</ieee_id><sourcerecordid>1709713506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-28c138fc4bfb505005b2e6644ca3b4be6b25a603522211915c5fffed6c8519c33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlbvgiB79LJ1JtnshzctVQutglToLWSzSbuy26yb7aH-elNbexpm5pmX4SHkGmGICNn9fDYZUkA-pBGmwPCE9JHzNKQ8WpySPtAkDQFi2iMXzn0BYMQhOyc9ylOWckz6ZDG1Slbljy6C8Vq3y234JJ1v3mxb7-ayK-06sCaY6aL0ZDCp5VK7h-CxaSo_-Ft3NhittOuCD1mUdtnKZrW9JGdGVk5fHeqAfD6P56PXcPr-Mhk9TkPFYuxCmipkqVFRbnIOHIDnVMdxFCnJ8ijXcU65jIFxSilihlxxY4wuYuX_zxRjA3K3z21a-73xT4i6dEpXlVxru3ECE8gSZBxij8IeVa11rtVGNG1Zy3YrEMTOp_A-xc6nOPj0J7eH9E1e6-J48C_QAzd7oNRaH9cJJIz7gF_HVnjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709713506</pqid></control><display><type>article</type><title>Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography</title><source>IEEE Electronic Library (IEL)</source><creator>Philipsen, R. H. H. M. ; Maduskar, P. ; Hogeweg, L. ; Melendez, J. ; Sanchez, C. I. ; van Ginneken, B.</creator><creatorcontrib>Philipsen, R. H. H. M. ; Maduskar, P. ; Hogeweg, L. ; Melendez, J. ; Sanchez, C. I. ; van Ginneken, B.</creatorcontrib><description>Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72 ± 0.30 and 0.87 ± 0.11 for both reference methods to 0.89 ± 0.09 (p <; 0.01) with normalization. The second experiment was aimed at segmentation of the clavicles. The reference methods had an average Jaccard index of 0.57 ± 0.26 and 0.53 ± 0.26; with normalization this significantly increased to 0.68 ± 0.23 (p <; 0.01). The third experiment was detection of tuberculosis related abnormalities in the lung fields. The average area under the Receiver Operating Curve increased significantly from 0.72 ± 0.14 and 0.79 ± 0.06 using the reference methods to 0.85 ± 0.05 (p <; 0.01) with normalization. We conclude that the normalization can be successfully applied in chest radiography and makes supervised systems more generally applicable to data from different sources.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2418031</identifier><identifier>PMID: 25838517</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical imaging ; CAD ; chest radiography ; energy ; Histograms ; Humans ; Image segmentation ; Indexes ; Lungs ; Normalization ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography ; Radiography, Thoracic - methods ; ROC Curve ; Training</subject><ispartof>IEEE transactions on medical imaging, 2015-09, Vol.34 (9), p.1965-1975</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-28c138fc4bfb505005b2e6644ca3b4be6b25a603522211915c5fffed6c8519c33</citedby><cites>FETCH-LOGICAL-c361t-28c138fc4bfb505005b2e6644ca3b4be6b25a603522211915c5fffed6c8519c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7073580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7073580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25838517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Philipsen, R. H. H. M.</creatorcontrib><creatorcontrib>Maduskar, P.</creatorcontrib><creatorcontrib>Hogeweg, L.</creatorcontrib><creatorcontrib>Melendez, J.</creatorcontrib><creatorcontrib>Sanchez, C. I.</creatorcontrib><creatorcontrib>van Ginneken, B.</creatorcontrib><title>Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72 ± 0.30 and 0.87 ± 0.11 for both reference methods to 0.89 ± 0.09 (p <; 0.01) with normalization. The second experiment was aimed at segmentation of the clavicles. The reference methods had an average Jaccard index of 0.57 ± 0.26 and 0.53 ± 0.26; with normalization this significantly increased to 0.68 ± 0.23 (p <; 0.01). The third experiment was detection of tuberculosis related abnormalities in the lung fields. The average area under the Receiver Operating Curve increased significantly from 0.72 ± 0.14 and 0.79 ± 0.06 using the reference methods to 0.85 ± 0.05 (p <; 0.01) with normalization. We conclude that the normalization can be successfully applied in chest radiography and makes supervised systems more generally applicable to data from different sources.</description><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>CAD</subject><subject>chest radiography</subject><subject>energy</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Indexes</subject><subject>Lungs</subject><subject>Normalization</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography</subject><subject>Radiography, Thoracic - methods</subject><subject>ROC Curve</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMotlbvgiB79LJ1JtnshzctVQutglToLWSzSbuy26yb7aH-elNbexpm5pmX4SHkGmGICNn9fDYZUkA-pBGmwPCE9JHzNKQ8WpySPtAkDQFi2iMXzn0BYMQhOyc9ylOWckz6ZDG1Slbljy6C8Vq3y234JJ1v3mxb7-ayK-06sCaY6aL0ZDCp5VK7h-CxaSo_-Ft3NhittOuCD1mUdtnKZrW9JGdGVk5fHeqAfD6P56PXcPr-Mhk9TkPFYuxCmipkqVFRbnIOHIDnVMdxFCnJ8ijXcU65jIFxSilihlxxY4wuYuX_zxRjA3K3z21a-73xT4i6dEpXlVxru3ECE8gSZBxij8IeVa11rtVGNG1Zy3YrEMTOp_A-xc6nOPj0J7eH9E1e6-J48C_QAzd7oNRaH9cJJIz7gF_HVnjM</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Philipsen, R. H. H. M.</creator><creator>Maduskar, P.</creator><creator>Hogeweg, L.</creator><creator>Melendez, J.</creator><creator>Sanchez, C. I.</creator><creator>van Ginneken, B.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography</title><author>Philipsen, R. H. H. M. ; Maduskar, P. ; Hogeweg, L. ; Melendez, J. ; Sanchez, C. I. ; van Ginneken, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-28c138fc4bfb505005b2e6644ca3b4be6b25a603522211915c5fffed6c8519c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>CAD</topic><topic>chest radiography</topic><topic>energy</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Indexes</topic><topic>Lungs</topic><topic>Normalization</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography</topic><topic>Radiography, Thoracic - methods</topic><topic>ROC Curve</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Philipsen, R. H. H. M.</creatorcontrib><creatorcontrib>Maduskar, P.</creatorcontrib><creatorcontrib>Hogeweg, L.</creatorcontrib><creatorcontrib>Melendez, J.</creatorcontrib><creatorcontrib>Sanchez, C. I.</creatorcontrib><creatorcontrib>van Ginneken, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Philipsen, R. H. H. M.</au><au>Maduskar, P.</au><au>Hogeweg, L.</au><au>Melendez, J.</au><au>Sanchez, C. I.</au><au>van Ginneken, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-09</date><risdate>2015</risdate><volume>34</volume><issue>9</issue><spage>1965</spage><epage>1975</epage><pages>1965-1975</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72 ± 0.30 and 0.87 ± 0.11 for both reference methods to 0.89 ± 0.09 (p <; 0.01) with normalization. The second experiment was aimed at segmentation of the clavicles. The reference methods had an average Jaccard index of 0.57 ± 0.26 and 0.53 ± 0.26; with normalization this significantly increased to 0.68 ± 0.23 (p <; 0.01). The third experiment was detection of tuberculosis related abnormalities in the lung fields. The average area under the Receiver Operating Curve increased significantly from 0.72 ± 0.14 and 0.79 ± 0.06 using the reference methods to 0.85 ± 0.05 (p <; 0.01) with normalization. We conclude that the normalization can be successfully applied in chest radiography and makes supervised systems more generally applicable to data from different sources.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25838517</pmid><doi>10.1109/TMI.2015.2418031</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2015-09, Vol.34 (9), p.1965-1975 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_pubmed_primary_25838517 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biomedical imaging CAD chest radiography energy Histograms Humans Image segmentation Indexes Lungs Normalization Radiographic Image Interpretation, Computer-Assisted - methods Radiography Radiography, Thoracic - methods ROC Curve Training |
title | Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Energy-Based%20Normalization%20of%20Medical%20Images:%20Application%20to%20Chest%20Radiography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Philipsen,%20R.%20H.%20H.%20M.&rft.date=2015-09&rft.volume=34&rft.issue=9&rft.spage=1965&rft.epage=1975&rft.pages=1965-1975&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2418031&rft_dat=%3Cproquest_RIE%3E1709713506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709713506&rft_id=info:pmid/25838517&rft_ieee_id=7073580&rfr_iscdi=true |