Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography

Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2015-09, Vol.34 (9), p.1965-1975
Hauptverfasser: Philipsen, R. H. H. M., Maduskar, P., Hogeweg, L., Melendez, J., Sanchez, C. I., van Ginneken, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1975
container_issue 9
container_start_page 1965
container_title IEEE transactions on medical imaging
container_volume 34
creator Philipsen, R. H. H. M.
Maduskar, P.
Hogeweg, L.
Melendez, J.
Sanchez, C. I.
van Ginneken, B.
description Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72 ± 0.30 and 0.87 ± 0.11 for both reference methods to 0.89 ± 0.09 (p
doi_str_mv 10.1109/TMI.2015.2418031
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_25838517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7073580</ieee_id><sourcerecordid>1709713506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-28c138fc4bfb505005b2e6644ca3b4be6b25a603522211915c5fffed6c8519c33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlbvgiB79LJ1JtnshzctVQutglToLWSzSbuy26yb7aH-elNbexpm5pmX4SHkGmGICNn9fDYZUkA-pBGmwPCE9JHzNKQ8WpySPtAkDQFi2iMXzn0BYMQhOyc9ylOWckz6ZDG1Slbljy6C8Vq3y234JJ1v3mxb7-ayK-06sCaY6aL0ZDCp5VK7h-CxaSo_-Ft3NhittOuCD1mUdtnKZrW9JGdGVk5fHeqAfD6P56PXcPr-Mhk9TkPFYuxCmipkqVFRbnIOHIDnVMdxFCnJ8ijXcU65jIFxSilihlxxY4wuYuX_zxRjA3K3z21a-73xT4i6dEpXlVxru3ECE8gSZBxij8IeVa11rtVGNG1Zy3YrEMTOp_A-xc6nOPj0J7eH9E1e6-J48C_QAzd7oNRaH9cJJIz7gF_HVnjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709713506</pqid></control><display><type>article</type><title>Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography</title><source>IEEE Electronic Library (IEL)</source><creator>Philipsen, R. H. H. M. ; Maduskar, P. ; Hogeweg, L. ; Melendez, J. ; Sanchez, C. I. ; van Ginneken, B.</creator><creatorcontrib>Philipsen, R. H. H. M. ; Maduskar, P. ; Hogeweg, L. ; Melendez, J. ; Sanchez, C. I. ; van Ginneken, B.</creatorcontrib><description>Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72 ± 0.30 and 0.87 ± 0.11 for both reference methods to 0.89 ± 0.09 (p &lt;; 0.01) with normalization. The second experiment was aimed at segmentation of the clavicles. The reference methods had an average Jaccard index of 0.57 ± 0.26 and 0.53 ± 0.26; with normalization this significantly increased to 0.68 ± 0.23 (p &lt;; 0.01). The third experiment was detection of tuberculosis related abnormalities in the lung fields. The average area under the Receiver Operating Curve increased significantly from 0.72 ± 0.14 and 0.79 ± 0.06 using the reference methods to 0.85 ± 0.05 (p &lt;; 0.01) with normalization. We conclude that the normalization can be successfully applied in chest radiography and makes supervised systems more generally applicable to data from different sources.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2418031</identifier><identifier>PMID: 25838517</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical imaging ; CAD ; chest radiography ; energy ; Histograms ; Humans ; Image segmentation ; Indexes ; Lungs ; Normalization ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography ; Radiography, Thoracic - methods ; ROC Curve ; Training</subject><ispartof>IEEE transactions on medical imaging, 2015-09, Vol.34 (9), p.1965-1975</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-28c138fc4bfb505005b2e6644ca3b4be6b25a603522211915c5fffed6c8519c33</citedby><cites>FETCH-LOGICAL-c361t-28c138fc4bfb505005b2e6644ca3b4be6b25a603522211915c5fffed6c8519c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7073580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7073580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25838517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Philipsen, R. H. H. M.</creatorcontrib><creatorcontrib>Maduskar, P.</creatorcontrib><creatorcontrib>Hogeweg, L.</creatorcontrib><creatorcontrib>Melendez, J.</creatorcontrib><creatorcontrib>Sanchez, C. I.</creatorcontrib><creatorcontrib>van Ginneken, B.</creatorcontrib><title>Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72 ± 0.30 and 0.87 ± 0.11 for both reference methods to 0.89 ± 0.09 (p &lt;; 0.01) with normalization. The second experiment was aimed at segmentation of the clavicles. The reference methods had an average Jaccard index of 0.57 ± 0.26 and 0.53 ± 0.26; with normalization this significantly increased to 0.68 ± 0.23 (p &lt;; 0.01). The third experiment was detection of tuberculosis related abnormalities in the lung fields. The average area under the Receiver Operating Curve increased significantly from 0.72 ± 0.14 and 0.79 ± 0.06 using the reference methods to 0.85 ± 0.05 (p &lt;; 0.01) with normalization. We conclude that the normalization can be successfully applied in chest radiography and makes supervised systems more generally applicable to data from different sources.</description><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>CAD</subject><subject>chest radiography</subject><subject>energy</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Indexes</subject><subject>Lungs</subject><subject>Normalization</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography</subject><subject>Radiography, Thoracic - methods</subject><subject>ROC Curve</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMotlbvgiB79LJ1JtnshzctVQutglToLWSzSbuy26yb7aH-elNbexpm5pmX4SHkGmGICNn9fDYZUkA-pBGmwPCE9JHzNKQ8WpySPtAkDQFi2iMXzn0BYMQhOyc9ylOWckz6ZDG1Slbljy6C8Vq3y234JJ1v3mxb7-ayK-06sCaY6aL0ZDCp5VK7h-CxaSo_-Ft3NhittOuCD1mUdtnKZrW9JGdGVk5fHeqAfD6P56PXcPr-Mhk9TkPFYuxCmipkqVFRbnIOHIDnVMdxFCnJ8ijXcU65jIFxSilihlxxY4wuYuX_zxRjA3K3z21a-73xT4i6dEpXlVxru3ECE8gSZBxij8IeVa11rtVGNG1Zy3YrEMTOp_A-xc6nOPj0J7eH9E1e6-J48C_QAzd7oNRaH9cJJIz7gF_HVnjM</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Philipsen, R. H. H. M.</creator><creator>Maduskar, P.</creator><creator>Hogeweg, L.</creator><creator>Melendez, J.</creator><creator>Sanchez, C. I.</creator><creator>van Ginneken, B.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography</title><author>Philipsen, R. H. H. M. ; Maduskar, P. ; Hogeweg, L. ; Melendez, J. ; Sanchez, C. I. ; van Ginneken, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-28c138fc4bfb505005b2e6644ca3b4be6b25a603522211915c5fffed6c8519c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>CAD</topic><topic>chest radiography</topic><topic>energy</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Indexes</topic><topic>Lungs</topic><topic>Normalization</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography</topic><topic>Radiography, Thoracic - methods</topic><topic>ROC Curve</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Philipsen, R. H. H. M.</creatorcontrib><creatorcontrib>Maduskar, P.</creatorcontrib><creatorcontrib>Hogeweg, L.</creatorcontrib><creatorcontrib>Melendez, J.</creatorcontrib><creatorcontrib>Sanchez, C. I.</creatorcontrib><creatorcontrib>van Ginneken, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Philipsen, R. H. H. M.</au><au>Maduskar, P.</au><au>Hogeweg, L.</au><au>Melendez, J.</au><au>Sanchez, C. I.</au><au>van Ginneken, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-09</date><risdate>2015</risdate><volume>34</volume><issue>9</issue><spage>1965</spage><epage>1975</epage><pages>1965-1975</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72 ± 0.30 and 0.87 ± 0.11 for both reference methods to 0.89 ± 0.09 (p &lt;; 0.01) with normalization. The second experiment was aimed at segmentation of the clavicles. The reference methods had an average Jaccard index of 0.57 ± 0.26 and 0.53 ± 0.26; with normalization this significantly increased to 0.68 ± 0.23 (p &lt;; 0.01). The third experiment was detection of tuberculosis related abnormalities in the lung fields. The average area under the Receiver Operating Curve increased significantly from 0.72 ± 0.14 and 0.79 ± 0.06 using the reference methods to 0.85 ± 0.05 (p &lt;; 0.01) with normalization. We conclude that the normalization can be successfully applied in chest radiography and makes supervised systems more generally applicable to data from different sources.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25838517</pmid><doi>10.1109/TMI.2015.2418031</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2015-09, Vol.34 (9), p.1965-1975
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmed_primary_25838517
source IEEE Electronic Library (IEL)
subjects Algorithms
Biomedical imaging
CAD
chest radiography
energy
Histograms
Humans
Image segmentation
Indexes
Lungs
Normalization
Radiographic Image Interpretation, Computer-Assisted - methods
Radiography
Radiography, Thoracic - methods
ROC Curve
Training
title Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Energy-Based%20Normalization%20of%20Medical%20Images:%20Application%20to%20Chest%20Radiography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Philipsen,%20R.%20H.%20H.%20M.&rft.date=2015-09&rft.volume=34&rft.issue=9&rft.spage=1965&rft.epage=1975&rft.pages=1965-1975&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2418031&rft_dat=%3Cproquest_RIE%3E1709713506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709713506&rft_id=info:pmid/25838517&rft_ieee_id=7073580&rfr_iscdi=true