Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes
We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical twee...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2015-07, Vol.14 (14), p.4843-4847 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4847 |
---|---|
container_issue | 14 |
container_start_page | 4843 |
container_title | Analyst (London) |
container_volume | 14 |
creator | Sischka, Andy Galla, Lukas Meyer, Andreas J Spiering, Andre Knust, Sebastian Mayer, Michael Hall, Adam R Beyer, André Reimann, Peter Gölzhäuser, Armin Anselmetti, Dario |
description | We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model.
The DNA threading forces through nanopores in novel carbon nano membranes and other membrane materials and their theory are presented. |
doi_str_mv | 10.1039/c4an02319f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25768647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709170432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5221a0fd81249121380dce92c28c438d2ebf4407e228fba1734533e4213808a93</originalsourceid><addsrcrecordid>eNqN0UlPxCAYBmBiNDouF-8avBkjytZSjpNxTcx40XNDgSqmhQqdg_9enHG5qQdC4HvyhvACsE_wGcFMnmuuPKaMyHYNTAgrOSoKWq2DCcaYIVoWfAtsp_SSjwQXeBNs0UKUVcnFBPhZ8GMMXWcNHKPyqQtajS54GFp4MZ_C8TmGxdMz9MqHIUSboPNQq9hk8nGHTmFyndPBI-_G6IxFUHkDOzc4g3RQY07ubd_kcJt2wUarumT3Pvcd8Hh1-TC7QXf317ez6R3SHJMRFZQShVtTEcoloYRV2GgrqaaV5qwy1DYt51hYSqu2UUQwXjBm-VJWSrIdcLzKHWJ4Xdg01r1L2nZdfkRYpJoILIWQUvyP5sUZ_ZuWkor895hkerKiOoaUom3rIbpexbea4PqjtXrGp_Nla1cZH37mLpremm_6VVMGBysQk_6e_tSe50e_zevBtOwdT-ml1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692755201</pqid></control><display><type>article</type><title>Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sischka, Andy ; Galla, Lukas ; Meyer, Andreas J ; Spiering, Andre ; Knust, Sebastian ; Mayer, Michael ; Hall, Adam R ; Beyer, André ; Reimann, Peter ; Gölzhäuser, Armin ; Anselmetti, Dario</creator><creatorcontrib>Sischka, Andy ; Galla, Lukas ; Meyer, Andreas J ; Spiering, Andre ; Knust, Sebastian ; Mayer, Michael ; Hall, Adam R ; Beyer, André ; Reimann, Peter ; Gölzhäuser, Armin ; Anselmetti, Dario</creatorcontrib><description>We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model.
The DNA threading forces through nanopores in novel carbon nano membranes and other membrane materials and their theory are presented.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/c4an02319f</identifier><identifier>PMID: 25768647</identifier><language>eng</language><publisher>England</publisher><subject>Biological Transport ; Carbon ; Carbon - chemistry ; Charging ; Deoxyribonucleic acid ; DNA - chemistry ; Lipids ; Lipids - chemistry ; Mathematical models ; Membranes ; Membranes, Artificial ; Nanopores ; Nanostructure ; Porosity ; Silicon Compounds - chemistry</subject><ispartof>Analyst (London), 2015-07, Vol.14 (14), p.4843-4847</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5221a0fd81249121380dce92c28c438d2ebf4407e228fba1734533e4213808a93</citedby><cites>FETCH-LOGICAL-c401t-5221a0fd81249121380dce92c28c438d2ebf4407e228fba1734533e4213808a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,2819,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25768647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sischka, Andy</creatorcontrib><creatorcontrib>Galla, Lukas</creatorcontrib><creatorcontrib>Meyer, Andreas J</creatorcontrib><creatorcontrib>Spiering, Andre</creatorcontrib><creatorcontrib>Knust, Sebastian</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><creatorcontrib>Hall, Adam R</creatorcontrib><creatorcontrib>Beyer, André</creatorcontrib><creatorcontrib>Reimann, Peter</creatorcontrib><creatorcontrib>Gölzhäuser, Armin</creatorcontrib><creatorcontrib>Anselmetti, Dario</creatorcontrib><title>Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model.
The DNA threading forces through nanopores in novel carbon nano membranes and other membrane materials and their theory are presented.</description><subject>Biological Transport</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Charging</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanopores</subject><subject>Nanostructure</subject><subject>Porosity</subject><subject>Silicon Compounds - chemistry</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0UlPxCAYBmBiNDouF-8avBkjytZSjpNxTcx40XNDgSqmhQqdg_9enHG5qQdC4HvyhvACsE_wGcFMnmuuPKaMyHYNTAgrOSoKWq2DCcaYIVoWfAtsp_SSjwQXeBNs0UKUVcnFBPhZ8GMMXWcNHKPyqQtajS54GFp4MZ_C8TmGxdMz9MqHIUSboPNQq9hk8nGHTmFyndPBI-_G6IxFUHkDOzc4g3RQY07ubd_kcJt2wUarumT3Pvcd8Hh1-TC7QXf317ez6R3SHJMRFZQShVtTEcoloYRV2GgrqaaV5qwy1DYt51hYSqu2UUQwXjBm-VJWSrIdcLzKHWJ4Xdg01r1L2nZdfkRYpJoILIWQUvyP5sUZ_ZuWkor895hkerKiOoaUom3rIbpexbea4PqjtXrGp_Nla1cZH37mLpremm_6VVMGBysQk_6e_tSe50e_zevBtOwdT-ml1Q</recordid><startdate>20150721</startdate><enddate>20150721</enddate><creator>Sischka, Andy</creator><creator>Galla, Lukas</creator><creator>Meyer, Andreas J</creator><creator>Spiering, Andre</creator><creator>Knust, Sebastian</creator><creator>Mayer, Michael</creator><creator>Hall, Adam R</creator><creator>Beyer, André</creator><creator>Reimann, Peter</creator><creator>Gölzhäuser, Armin</creator><creator>Anselmetti, Dario</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150721</creationdate><title>Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes</title><author>Sischka, Andy ; Galla, Lukas ; Meyer, Andreas J ; Spiering, Andre ; Knust, Sebastian ; Mayer, Michael ; Hall, Adam R ; Beyer, André ; Reimann, Peter ; Gölzhäuser, Armin ; Anselmetti, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5221a0fd81249121380dce92c28c438d2ebf4407e228fba1734533e4213808a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological Transport</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Charging</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanopores</topic><topic>Nanostructure</topic><topic>Porosity</topic><topic>Silicon Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sischka, Andy</creatorcontrib><creatorcontrib>Galla, Lukas</creatorcontrib><creatorcontrib>Meyer, Andreas J</creatorcontrib><creatorcontrib>Spiering, Andre</creatorcontrib><creatorcontrib>Knust, Sebastian</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><creatorcontrib>Hall, Adam R</creatorcontrib><creatorcontrib>Beyer, André</creatorcontrib><creatorcontrib>Reimann, Peter</creatorcontrib><creatorcontrib>Gölzhäuser, Armin</creatorcontrib><creatorcontrib>Anselmetti, Dario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sischka, Andy</au><au>Galla, Lukas</au><au>Meyer, Andreas J</au><au>Spiering, Andre</au><au>Knust, Sebastian</au><au>Mayer, Michael</au><au>Hall, Adam R</au><au>Beyer, André</au><au>Reimann, Peter</au><au>Gölzhäuser, Armin</au><au>Anselmetti, Dario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2015-07-21</date><risdate>2015</risdate><volume>14</volume><issue>14</issue><spage>4843</spage><epage>4847</epage><pages>4843-4847</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model.
The DNA threading forces through nanopores in novel carbon nano membranes and other membrane materials and their theory are presented.</abstract><cop>England</cop><pmid>25768647</pmid><doi>10.1039/c4an02319f</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2015-07, Vol.14 (14), p.4843-4847 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_pubmed_primary_25768647 |
source | Royal Society of Chemistry Journals Archive (1841-2007); MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biological Transport Carbon Carbon - chemistry Charging Deoxyribonucleic acid DNA - chemistry Lipids Lipids - chemistry Mathematical models Membranes Membranes, Artificial Nanopores Nanostructure Porosity Silicon Compounds - chemistry |
title | Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20translocation%20of%20DNA%20through%20nanopores%20in%20carbon%20nano-,%20silicon-nitride-%20and%20lipid-coated%20membranes&rft.jtitle=Analyst%20(London)&rft.au=Sischka,%20Andy&rft.date=2015-07-21&rft.volume=14&rft.issue=14&rft.spage=4843&rft.epage=4847&rft.pages=4843-4847&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/c4an02319f&rft_dat=%3Cproquest_pubme%3E1709170432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692755201&rft_id=info:pmid/25768647&rfr_iscdi=true |