Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes

We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical twee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2015-07, Vol.14 (14), p.4843-4847
Hauptverfasser: Sischka, Andy, Galla, Lukas, Meyer, Andreas J, Spiering, Andre, Knust, Sebastian, Mayer, Michael, Hall, Adam R, Beyer, André, Reimann, Peter, Gölzhäuser, Armin, Anselmetti, Dario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4847
container_issue 14
container_start_page 4843
container_title Analyst (London)
container_volume 14
creator Sischka, Andy
Galla, Lukas
Meyer, Andreas J
Spiering, Andre
Knust, Sebastian
Mayer, Michael
Hall, Adam R
Beyer, André
Reimann, Peter
Gölzhäuser, Armin
Anselmetti, Dario
description We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model. The DNA threading forces through nanopores in novel carbon nano membranes and other membrane materials and their theory are presented.
doi_str_mv 10.1039/c4an02319f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25768647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709170432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5221a0fd81249121380dce92c28c438d2ebf4407e228fba1734533e4213808a93</originalsourceid><addsrcrecordid>eNqN0UlPxCAYBmBiNDouF-8avBkjytZSjpNxTcx40XNDgSqmhQqdg_9enHG5qQdC4HvyhvACsE_wGcFMnmuuPKaMyHYNTAgrOSoKWq2DCcaYIVoWfAtsp_SSjwQXeBNs0UKUVcnFBPhZ8GMMXWcNHKPyqQtajS54GFp4MZ_C8TmGxdMz9MqHIUSboPNQq9hk8nGHTmFyndPBI-_G6IxFUHkDOzc4g3RQY07ubd_kcJt2wUarumT3Pvcd8Hh1-TC7QXf317ez6R3SHJMRFZQShVtTEcoloYRV2GgrqaaV5qwy1DYt51hYSqu2UUQwXjBm-VJWSrIdcLzKHWJ4Xdg01r1L2nZdfkRYpJoILIWQUvyP5sUZ_ZuWkor895hkerKiOoaUom3rIbpexbea4PqjtXrGp_Nla1cZH37mLpremm_6VVMGBysQk_6e_tSe50e_zevBtOwdT-ml1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692755201</pqid></control><display><type>article</type><title>Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sischka, Andy ; Galla, Lukas ; Meyer, Andreas J ; Spiering, Andre ; Knust, Sebastian ; Mayer, Michael ; Hall, Adam R ; Beyer, André ; Reimann, Peter ; Gölzhäuser, Armin ; Anselmetti, Dario</creator><creatorcontrib>Sischka, Andy ; Galla, Lukas ; Meyer, Andreas J ; Spiering, Andre ; Knust, Sebastian ; Mayer, Michael ; Hall, Adam R ; Beyer, André ; Reimann, Peter ; Gölzhäuser, Armin ; Anselmetti, Dario</creatorcontrib><description>We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model. The DNA threading forces through nanopores in novel carbon nano membranes and other membrane materials and their theory are presented.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/c4an02319f</identifier><identifier>PMID: 25768647</identifier><language>eng</language><publisher>England</publisher><subject>Biological Transport ; Carbon ; Carbon - chemistry ; Charging ; Deoxyribonucleic acid ; DNA - chemistry ; Lipids ; Lipids - chemistry ; Mathematical models ; Membranes ; Membranes, Artificial ; Nanopores ; Nanostructure ; Porosity ; Silicon Compounds - chemistry</subject><ispartof>Analyst (London), 2015-07, Vol.14 (14), p.4843-4847</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5221a0fd81249121380dce92c28c438d2ebf4407e228fba1734533e4213808a93</citedby><cites>FETCH-LOGICAL-c401t-5221a0fd81249121380dce92c28c438d2ebf4407e228fba1734533e4213808a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,2819,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25768647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sischka, Andy</creatorcontrib><creatorcontrib>Galla, Lukas</creatorcontrib><creatorcontrib>Meyer, Andreas J</creatorcontrib><creatorcontrib>Spiering, Andre</creatorcontrib><creatorcontrib>Knust, Sebastian</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><creatorcontrib>Hall, Adam R</creatorcontrib><creatorcontrib>Beyer, André</creatorcontrib><creatorcontrib>Reimann, Peter</creatorcontrib><creatorcontrib>Gölzhäuser, Armin</creatorcontrib><creatorcontrib>Anselmetti, Dario</creatorcontrib><title>Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model. The DNA threading forces through nanopores in novel carbon nano membranes and other membrane materials and their theory are presented.</description><subject>Biological Transport</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Charging</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanopores</subject><subject>Nanostructure</subject><subject>Porosity</subject><subject>Silicon Compounds - chemistry</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0UlPxCAYBmBiNDouF-8avBkjytZSjpNxTcx40XNDgSqmhQqdg_9enHG5qQdC4HvyhvACsE_wGcFMnmuuPKaMyHYNTAgrOSoKWq2DCcaYIVoWfAtsp_SSjwQXeBNs0UKUVcnFBPhZ8GMMXWcNHKPyqQtajS54GFp4MZ_C8TmGxdMz9MqHIUSboPNQq9hk8nGHTmFyndPBI-_G6IxFUHkDOzc4g3RQY07ubd_kcJt2wUarumT3Pvcd8Hh1-TC7QXf317ez6R3SHJMRFZQShVtTEcoloYRV2GgrqaaV5qwy1DYt51hYSqu2UUQwXjBm-VJWSrIdcLzKHWJ4Xdg01r1L2nZdfkRYpJoILIWQUvyP5sUZ_ZuWkor895hkerKiOoaUom3rIbpexbea4PqjtXrGp_Nla1cZH37mLpremm_6VVMGBysQk_6e_tSe50e_zevBtOwdT-ml1Q</recordid><startdate>20150721</startdate><enddate>20150721</enddate><creator>Sischka, Andy</creator><creator>Galla, Lukas</creator><creator>Meyer, Andreas J</creator><creator>Spiering, Andre</creator><creator>Knust, Sebastian</creator><creator>Mayer, Michael</creator><creator>Hall, Adam R</creator><creator>Beyer, André</creator><creator>Reimann, Peter</creator><creator>Gölzhäuser, Armin</creator><creator>Anselmetti, Dario</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150721</creationdate><title>Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes</title><author>Sischka, Andy ; Galla, Lukas ; Meyer, Andreas J ; Spiering, Andre ; Knust, Sebastian ; Mayer, Michael ; Hall, Adam R ; Beyer, André ; Reimann, Peter ; Gölzhäuser, Armin ; Anselmetti, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5221a0fd81249121380dce92c28c438d2ebf4407e228fba1734533e4213808a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological Transport</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Charging</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanopores</topic><topic>Nanostructure</topic><topic>Porosity</topic><topic>Silicon Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sischka, Andy</creatorcontrib><creatorcontrib>Galla, Lukas</creatorcontrib><creatorcontrib>Meyer, Andreas J</creatorcontrib><creatorcontrib>Spiering, Andre</creatorcontrib><creatorcontrib>Knust, Sebastian</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><creatorcontrib>Hall, Adam R</creatorcontrib><creatorcontrib>Beyer, André</creatorcontrib><creatorcontrib>Reimann, Peter</creatorcontrib><creatorcontrib>Gölzhäuser, Armin</creatorcontrib><creatorcontrib>Anselmetti, Dario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sischka, Andy</au><au>Galla, Lukas</au><au>Meyer, Andreas J</au><au>Spiering, Andre</au><au>Knust, Sebastian</au><au>Mayer, Michael</au><au>Hall, Adam R</au><au>Beyer, André</au><au>Reimann, Peter</au><au>Gölzhäuser, Armin</au><au>Anselmetti, Dario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2015-07-21</date><risdate>2015</risdate><volume>14</volume><issue>14</issue><spage>4843</spage><epage>4847</epage><pages>4843-4847</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>We investigated experimentally and theoretically the translocation forces when a charged polymer is threaded through a solid-state nanopore and found distinct dependencies on the nanopore diameter as well as on the nano membrane material chemistry. For this purpose we utilized dedicated optical tweezers force mechanics capable of probing the insertion of negatively charged double-stranded DNA inside a helium-ion drilled nanopore. We found that both the diameter of the nanopore and the membrane material itself have significant influences on the electroosmotic flow through the nanopore and thus on the threading force. Compared to a bare silicon-nitride membrane, the threading of DNA through only 3 nm thin carbon nano membranes as well as lipid bilayer-coated nanopores increased the threading force by 15% or 85%, respectively. This finding was quantitatively described by our recently developed theoretical model that also incorporates hydrodynamic slip effects on the translocating DNA molecule and the force dependence on the membrane thickness. The additional measurements presented in this paper further support our model. The DNA threading forces through nanopores in novel carbon nano membranes and other membrane materials and their theory are presented.</abstract><cop>England</cop><pmid>25768647</pmid><doi>10.1039/c4an02319f</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2015-07, Vol.14 (14), p.4843-4847
issn 0003-2654
1364-5528
language eng
recordid cdi_pubmed_primary_25768647
source Royal Society of Chemistry Journals Archive (1841-2007); MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biological Transport
Carbon
Carbon - chemistry
Charging
Deoxyribonucleic acid
DNA - chemistry
Lipids
Lipids - chemistry
Mathematical models
Membranes
Membranes, Artificial
Nanopores
Nanostructure
Porosity
Silicon Compounds - chemistry
title Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20translocation%20of%20DNA%20through%20nanopores%20in%20carbon%20nano-,%20silicon-nitride-%20and%20lipid-coated%20membranes&rft.jtitle=Analyst%20(London)&rft.au=Sischka,%20Andy&rft.date=2015-07-21&rft.volume=14&rft.issue=14&rft.spage=4843&rft.epage=4847&rft.pages=4843-4847&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/c4an02319f&rft_dat=%3Cproquest_pubme%3E1709170432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692755201&rft_id=info:pmid/25768647&rfr_iscdi=true