A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings

Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2015-03, Vol.12 (104), p.20141088-20141088
Hauptverfasser: Eberle, A. L., Dickerson, B. H., Reinhall, P. G., Daniel, T. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20141088
container_issue 104
container_start_page 20141088
container_title Journal of the Royal Society interface
container_volume 12
creator Eberle, A. L.
Dickerson, B. H.
Reinhall, P. G.
Daniel, T. L.
description Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations.
doi_str_mv 10.1098/rsif.2014.1088
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25631565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652428639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-6d18503cc53eb209f485c2b472dcdece2c365564af3b69c633163e41fbff839b3</originalsourceid><addsrcrecordid>eNqFUU1vEzEUtBCIfsC1R-QjBxL8HW8PSFVFC1IlLnC2vF47dbWxF9sh7L_nRSlRe0BIljxjz5tnv0HogpIlJZ3-WGoMS0aoAKr1C3RKV4ItpFLs5RHr7gSd1fpACF9xKV-jEyYVp1LJU-SucPI73HaxNpwTXs8lV5en6HD1qca0vsR9HmZccrMt5lTx6O2AW4YFzaEkJhxGO02g_QDI_wYAh9W7hneA6xv0Ktix-reP-zn6cfP5-_WXxd2326_XV3cLJzlvCzVQLQl3wHzPSBeElo71YsUGN3jnmeNKSiVs4L3qnOKcKu4FDX0Imnc9P0efDr7Ttt_4wfnUih3NVOLGltlkG83zmxTvzTr_MoILKVYSDN4_GpT8c-trM5tYnR9Hm3zeVkM1pR0RCvr-V6okE0wr3oF0eZA6GG0tPhxfRInZh2j2IZp9iGYfIhS8e_qPo_xvaiDgB0HJMww0u-jbbB7ytiSg_7L9AyLbq-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652428639</pqid></control><display><type>article</type><title>A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings</title><source>MEDLINE</source><source>PubMed Central</source><creator>Eberle, A. L. ; Dickerson, B. H. ; Reinhall, P. G. ; Daniel, T. L.</creator><creatorcontrib>Eberle, A. L. ; Dickerson, B. H. ; Reinhall, P. G. ; Daniel, T. L.</creatorcontrib><description>Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2014.1088</identifier><identifier>PMID: 25631565</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biomechanical Phenomena ; Computational Modelling ; Computer Simulation ; Coriolis Forces ; Energy Methods ; Flight, Animal - physiology ; Insecta - physiology ; Manduca ; Manduca sexta ; Models, Biological ; Movement ; Oscillometry ; Range of Motion, Articular ; Robotic Actuation ; Robotics ; Rotation ; Shear Strength ; Strain Sensing ; Stress, Mechanical ; Wing Flexibility ; Wings, Animal - physiology</subject><ispartof>Journal of the Royal Society interface, 2015-03, Vol.12 (104), p.20141088-20141088</ispartof><rights>2015 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2015 The Author(s) Published by the Royal Society. All rights reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-6d18503cc53eb209f485c2b472dcdece2c365564af3b69c633163e41fbff839b3</citedby><cites>FETCH-LOGICAL-c533t-6d18503cc53eb209f485c2b472dcdece2c365564af3b69c633163e41fbff839b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345475/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345475/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25631565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eberle, A. L.</creatorcontrib><creatorcontrib>Dickerson, B. H.</creatorcontrib><creatorcontrib>Reinhall, P. G.</creatorcontrib><creatorcontrib>Daniel, T. L.</creatorcontrib><title>A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Computational Modelling</subject><subject>Computer Simulation</subject><subject>Coriolis Forces</subject><subject>Energy Methods</subject><subject>Flight, Animal - physiology</subject><subject>Insecta - physiology</subject><subject>Manduca</subject><subject>Manduca sexta</subject><subject>Models, Biological</subject><subject>Movement</subject><subject>Oscillometry</subject><subject>Range of Motion, Articular</subject><subject>Robotic Actuation</subject><subject>Robotics</subject><subject>Rotation</subject><subject>Shear Strength</subject><subject>Strain Sensing</subject><subject>Stress, Mechanical</subject><subject>Wing Flexibility</subject><subject>Wings, Animal - physiology</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1vEzEUtBCIfsC1R-QjBxL8HW8PSFVFC1IlLnC2vF47dbWxF9sh7L_nRSlRe0BIljxjz5tnv0HogpIlJZ3-WGoMS0aoAKr1C3RKV4ItpFLs5RHr7gSd1fpACF9xKV-jEyYVp1LJU-SucPI73HaxNpwTXs8lV5en6HD1qca0vsR9HmZccrMt5lTx6O2AW4YFzaEkJhxGO02g_QDI_wYAh9W7hneA6xv0Ktix-reP-zn6cfP5-_WXxd2326_XV3cLJzlvCzVQLQl3wHzPSBeElo71YsUGN3jnmeNKSiVs4L3qnOKcKu4FDX0Imnc9P0efDr7Ttt_4wfnUih3NVOLGltlkG83zmxTvzTr_MoILKVYSDN4_GpT8c-trM5tYnR9Hm3zeVkM1pR0RCvr-V6okE0wr3oF0eZA6GG0tPhxfRInZh2j2IZp9iGYfIhS8e_qPo_xvaiDgB0HJMww0u-jbbB7ytiSg_7L9AyLbq-g</recordid><startdate>20150306</startdate><enddate>20150306</enddate><creator>Eberle, A. L.</creator><creator>Dickerson, B. H.</creator><creator>Reinhall, P. G.</creator><creator>Daniel, T. L.</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SS</scope><scope>5PM</scope></search><sort><creationdate>20150306</creationdate><title>A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings</title><author>Eberle, A. L. ; Dickerson, B. H. ; Reinhall, P. G. ; Daniel, T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-6d18503cc53eb209f485c2b472dcdece2c365564af3b69c633163e41fbff839b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Computational Modelling</topic><topic>Computer Simulation</topic><topic>Coriolis Forces</topic><topic>Energy Methods</topic><topic>Flight, Animal - physiology</topic><topic>Insecta - physiology</topic><topic>Manduca</topic><topic>Manduca sexta</topic><topic>Models, Biological</topic><topic>Movement</topic><topic>Oscillometry</topic><topic>Range of Motion, Articular</topic><topic>Robotic Actuation</topic><topic>Robotics</topic><topic>Rotation</topic><topic>Shear Strength</topic><topic>Strain Sensing</topic><topic>Stress, Mechanical</topic><topic>Wing Flexibility</topic><topic>Wings, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberle, A. L.</creatorcontrib><creatorcontrib>Dickerson, B. H.</creatorcontrib><creatorcontrib>Reinhall, P. G.</creatorcontrib><creatorcontrib>Daniel, T. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberle, A. L.</au><au>Dickerson, B. H.</au><au>Reinhall, P. G.</au><au>Daniel, T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2015-03-06</date><risdate>2015</risdate><volume>12</volume><issue>104</issue><spage>20141088</spage><epage>20141088</epage><pages>20141088-20141088</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>25631565</pmid><doi>10.1098/rsif.2014.1088</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2015-03, Vol.12 (104), p.20141088-20141088
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmed_primary_25631565
source MEDLINE; PubMed Central
subjects Animals
Biomechanical Phenomena
Computational Modelling
Computer Simulation
Coriolis Forces
Energy Methods
Flight, Animal - physiology
Insecta - physiology
Manduca
Manduca sexta
Models, Biological
Movement
Oscillometry
Range of Motion, Articular
Robotic Actuation
Robotics
Rotation
Shear Strength
Strain Sensing
Stress, Mechanical
Wing Flexibility
Wings, Animal - physiology
title A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20twist%20on%20gyroscopic%20sensing:%20body%20rotations%20lead%20to%20torsion%20in%20flapping,%20flexing%20insect%20wings&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Eberle,%20A.%20L.&rft.date=2015-03-06&rft.volume=12&rft.issue=104&rft.spage=20141088&rft.epage=20141088&rft.pages=20141088-20141088&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2014.1088&rft_dat=%3Cproquest_pubme%3E1652428639%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652428639&rft_id=info:pmid/25631565&rfr_iscdi=true