A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings
Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are f...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2015-03, Vol.12 (104), p.20141088-20141088 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20141088 |
---|---|
container_issue | 104 |
container_start_page | 20141088 |
container_title | Journal of the Royal Society interface |
container_volume | 12 |
creator | Eberle, A. L. Dickerson, B. H. Reinhall, P. G. Daniel, T. L. |
description | Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. |
doi_str_mv | 10.1098/rsif.2014.1088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25631565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652428639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-6d18503cc53eb209f485c2b472dcdece2c365564af3b69c633163e41fbff839b3</originalsourceid><addsrcrecordid>eNqFUU1vEzEUtBCIfsC1R-QjBxL8HW8PSFVFC1IlLnC2vF47dbWxF9sh7L_nRSlRe0BIljxjz5tnv0HogpIlJZ3-WGoMS0aoAKr1C3RKV4ItpFLs5RHr7gSd1fpACF9xKV-jEyYVp1LJU-SucPI73HaxNpwTXs8lV5en6HD1qca0vsR9HmZccrMt5lTx6O2AW4YFzaEkJhxGO02g_QDI_wYAh9W7hneA6xv0Ktix-reP-zn6cfP5-_WXxd2326_XV3cLJzlvCzVQLQl3wHzPSBeElo71YsUGN3jnmeNKSiVs4L3qnOKcKu4FDX0Imnc9P0efDr7Ttt_4wfnUih3NVOLGltlkG83zmxTvzTr_MoILKVYSDN4_GpT8c-trM5tYnR9Hm3zeVkM1pR0RCvr-V6okE0wr3oF0eZA6GG0tPhxfRInZh2j2IZp9iGYfIhS8e_qPo_xvaiDgB0HJMww0u-jbbB7ytiSg_7L9AyLbq-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652428639</pqid></control><display><type>article</type><title>A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings</title><source>MEDLINE</source><source>PubMed Central</source><creator>Eberle, A. L. ; Dickerson, B. H. ; Reinhall, P. G. ; Daniel, T. L.</creator><creatorcontrib>Eberle, A. L. ; Dickerson, B. H. ; Reinhall, P. G. ; Daniel, T. L.</creatorcontrib><description>Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2014.1088</identifier><identifier>PMID: 25631565</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biomechanical Phenomena ; Computational Modelling ; Computer Simulation ; Coriolis Forces ; Energy Methods ; Flight, Animal - physiology ; Insecta - physiology ; Manduca ; Manduca sexta ; Models, Biological ; Movement ; Oscillometry ; Range of Motion, Articular ; Robotic Actuation ; Robotics ; Rotation ; Shear Strength ; Strain Sensing ; Stress, Mechanical ; Wing Flexibility ; Wings, Animal - physiology</subject><ispartof>Journal of the Royal Society interface, 2015-03, Vol.12 (104), p.20141088-20141088</ispartof><rights>2015 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2015 The Author(s) Published by the Royal Society. All rights reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-6d18503cc53eb209f485c2b472dcdece2c365564af3b69c633163e41fbff839b3</citedby><cites>FETCH-LOGICAL-c533t-6d18503cc53eb209f485c2b472dcdece2c365564af3b69c633163e41fbff839b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345475/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345475/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25631565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eberle, A. L.</creatorcontrib><creatorcontrib>Dickerson, B. H.</creatorcontrib><creatorcontrib>Reinhall, P. G.</creatorcontrib><creatorcontrib>Daniel, T. L.</creatorcontrib><title>A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Computational Modelling</subject><subject>Computer Simulation</subject><subject>Coriolis Forces</subject><subject>Energy Methods</subject><subject>Flight, Animal - physiology</subject><subject>Insecta - physiology</subject><subject>Manduca</subject><subject>Manduca sexta</subject><subject>Models, Biological</subject><subject>Movement</subject><subject>Oscillometry</subject><subject>Range of Motion, Articular</subject><subject>Robotic Actuation</subject><subject>Robotics</subject><subject>Rotation</subject><subject>Shear Strength</subject><subject>Strain Sensing</subject><subject>Stress, Mechanical</subject><subject>Wing Flexibility</subject><subject>Wings, Animal - physiology</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1vEzEUtBCIfsC1R-QjBxL8HW8PSFVFC1IlLnC2vF47dbWxF9sh7L_nRSlRe0BIljxjz5tnv0HogpIlJZ3-WGoMS0aoAKr1C3RKV4ItpFLs5RHr7gSd1fpACF9xKV-jEyYVp1LJU-SucPI73HaxNpwTXs8lV5en6HD1qca0vsR9HmZccrMt5lTx6O2AW4YFzaEkJhxGO02g_QDI_wYAh9W7hneA6xv0Ktix-reP-zn6cfP5-_WXxd2326_XV3cLJzlvCzVQLQl3wHzPSBeElo71YsUGN3jnmeNKSiVs4L3qnOKcKu4FDX0Imnc9P0efDr7Ttt_4wfnUih3NVOLGltlkG83zmxTvzTr_MoILKVYSDN4_GpT8c-trM5tYnR9Hm3zeVkM1pR0RCvr-V6okE0wr3oF0eZA6GG0tPhxfRInZh2j2IZp9iGYfIhS8e_qPo_xvaiDgB0HJMww0u-jbbB7ytiSg_7L9AyLbq-g</recordid><startdate>20150306</startdate><enddate>20150306</enddate><creator>Eberle, A. L.</creator><creator>Dickerson, B. H.</creator><creator>Reinhall, P. G.</creator><creator>Daniel, T. L.</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SS</scope><scope>5PM</scope></search><sort><creationdate>20150306</creationdate><title>A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings</title><author>Eberle, A. L. ; Dickerson, B. H. ; Reinhall, P. G. ; Daniel, T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-6d18503cc53eb209f485c2b472dcdece2c365564af3b69c633163e41fbff839b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Computational Modelling</topic><topic>Computer Simulation</topic><topic>Coriolis Forces</topic><topic>Energy Methods</topic><topic>Flight, Animal - physiology</topic><topic>Insecta - physiology</topic><topic>Manduca</topic><topic>Manduca sexta</topic><topic>Models, Biological</topic><topic>Movement</topic><topic>Oscillometry</topic><topic>Range of Motion, Articular</topic><topic>Robotic Actuation</topic><topic>Robotics</topic><topic>Rotation</topic><topic>Shear Strength</topic><topic>Strain Sensing</topic><topic>Stress, Mechanical</topic><topic>Wing Flexibility</topic><topic>Wings, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberle, A. L.</creatorcontrib><creatorcontrib>Dickerson, B. H.</creatorcontrib><creatorcontrib>Reinhall, P. G.</creatorcontrib><creatorcontrib>Daniel, T. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberle, A. L.</au><au>Dickerson, B. H.</au><au>Reinhall, P. G.</au><au>Daniel, T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2015-03-06</date><risdate>2015</risdate><volume>12</volume><issue>104</issue><spage>20141088</spage><epage>20141088</epage><pages>20141088-20141088</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>25631565</pmid><doi>10.1098/rsif.2014.1088</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2015-03, Vol.12 (104), p.20141088-20141088 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmed_primary_25631565 |
source | MEDLINE; PubMed Central |
subjects | Animals Biomechanical Phenomena Computational Modelling Computer Simulation Coriolis Forces Energy Methods Flight, Animal - physiology Insecta - physiology Manduca Manduca sexta Models, Biological Movement Oscillometry Range of Motion, Articular Robotic Actuation Robotics Rotation Shear Strength Strain Sensing Stress, Mechanical Wing Flexibility Wings, Animal - physiology |
title | A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20twist%20on%20gyroscopic%20sensing:%20body%20rotations%20lead%20to%20torsion%20in%20flapping,%20flexing%20insect%20wings&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Eberle,%20A.%20L.&rft.date=2015-03-06&rft.volume=12&rft.issue=104&rft.spage=20141088&rft.epage=20141088&rft.pages=20141088-20141088&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2014.1088&rft_dat=%3Cproquest_pubme%3E1652428639%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652428639&rft_id=info:pmid/25631565&rfr_iscdi=true |